
Notes on Robust Control,
H∞, LMIs, BRL,

Guaranteed Cost Control (with Delays)
D-stability, Switched Systems

(includes Matlab code)

Leonidas D. Dritsas

Dipl. Electrical Eng., M.Sc, Ph.D

dritsas@aspete.gr

ldri@otenet.gr

http://users.otenet.gr/˜ldri/index.htm

Athens, 21 November 2020

http://users.otenet.gr/~ldri/index.htm


L. Dritsa’s Notes on H∞, Robust Control, LMIs

Contents

1 References 5

2 Mathematical Background 6
2.1 SVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Properties of Real Symmetric (Hermitian) matrices . . . . . . . . . . . . . . . . . . 6
2.3 Properties of Positive Definite Matrices . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Congruent Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Useful Matrix Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.5.1 “First Fundamental Matrix Inequality” . . . . . . . . . . . . . . . . . . . . . 8
2.5.2 Variations of the “First Fundamental Matrix Inequality” . . . . . . . . . . . 8
2.5.3 “Second Fundamental Matrix Inequality (Lemma)” . . . . . . . . . . . . . . 9
2.5.4 “Third Fundamental Matrix Inequality” and the Matrix Inversion Lemma . . 10

2.6 Schur Complement and LMIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Lyapunov Stability Analysis and Static State Feedback (SSF) Synthesis via LMI 13
3.1 Continuous Time (CT) Lyapunov inequality expressed as LMI . . . . . . . . . . . . 13
3.2 SSF Synthesis via LMI for CT–LTI systems without uncertainty . . . . . . . . . . . 13
3.3 SSF Synthesis via LMI for CT–LTI polytopic uncertain systems . . . . . . . . . . . 14
3.4 SSF Synthesis via LMI for CT–LTI systems with norm–bounded uncertainty . . . . . 15
3.5 Discrete Time (DT) Lyapunov inequality expressed as LMI . . . . . . . . . . . . . . 16
3.6 SSF Synthesis via LMI for DT–LTI systems without uncertainty . . . . . . . . . . . 17
3.7 SSF Synthesis via LMI for DT–LTI systems with polytopic or norm–bounded un-

certainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4 Bounded Real Lemma for Continuous Time systems (CT-BRL) 19
4.1 BRL as a Robust Quadratic Stability Criterion for CT-LTI Uncertain Systems . . . . 19

4.1.1 First Version of BRL (no feed–through term) . . . . . . . . . . . . . . . . . 20
4.1.2 First Version of BRL with feed–through term . . . . . . . . . . . . . . . . . 21
4.1.3 First Version of BRL: RECAPITULATION . . . . . . . . . . . . . . . . . . 22
4.1.4 Second Version of BRL (no feed–through term) . . . . . . . . . . . . . . . 23
4.1.5 Second Version of BRL with feed–through term . . . . . . . . . . . . . . . . 23
4.1.6 Second Version of BRL: RECAPITULATION . . . . . . . . . . . . . . . . 24
4.1.7 A Congruent Transformation relates the two BRL Versions . . . . . . . . . . 24

4.2 Relating BRL and H∞ system norm implies a Disturbance Rejection interpretation . 26
4.2.1 Proof of Sufficiency (feasible BRL⇒ H∞ norm ≤ µ) . . . . . . . . . . . . . 27
4.2.2 Alternative Proof of Sufficiency (feasible BRL⇒ H∞ norm ≤ µ) . . . . . . 28

5 H∞ Synthesis for Continuous Time Systems 30
5.1 H∞ State Feedback Synthesis for CT LTI without Uncertainties . . . . . . . . . . . . 30
5.2 H∞ State Feedback Synthesis for CT LTI with Norm Bounded Uncertainties . . . . . 32
5.3 H∞ Dynamic Output Feedback Synthesis for CT LTI without Uncertainties - (IN-

COMPLETE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.4 H∞ mixed sensitivity design(s) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.4.1 Mixed sensitivity design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.4.2 Selecting the filters Wp, Wt, Wu . . . . . . . . . . . . . . . . . . . . . . . . 35

L. Dritsas PhD 2020 2



L. Dritsa’s Notes on H∞, Robust Control, LMIs

6 Bounded Real Lemma for Discrete Time systems (DT-BRL) 38
6.1 BRL as a Robust Quadratic Stability Criterion for DT-LTI Uncertain Systems . . . . 38
6.2 Alternative formulations of the DT BRL . . . . . . . . . . . . . . . . . . . . . . . . 40
6.3 A note on the Controllability and Observability of Discrete–Time Systems . . . . . . 40

7 The scaling trick for H∞ Analysis & Synthesis of Uncertain Linear CT & DT Systems 41
7.1 H∞ control for uncertain Continuous–Time systems . . . . . . . . . . . . . . . . . . 41
7.2 H∞ control for uncertain Discrete–Time systems . . . . . . . . . . . . . . . . . . . . 42

8 MATLAB code for various Robust and H∞ analysis & synthesis approaches 43
8.1 MATLAB code-1: Robust CT SSF Synthesis for Uncertain CT Unstable Sys . . . . 43
8.2 MATLAB code-2: minimum H∞ system norm γ via BRL–LMI + “mincx” . . . . . . 45
8.3 MATLAB code-2: Robust SSF Synthesis via LMI for uncertain CT system . . . . . 46
8.4 MATLAB code-3: Robust SSF Synthesis via LMI for uncertain DT system (IN-

COMPLETE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
8.4.1 Numerical Result: Robust DT SSF Synthesis for Uncertain CT Unstable Sys 51

8.5 MATLAB code-4: H∞ SSF synthesis (INCOMPLETE) . . . . . . . . . . . . . . . . 53
8.6 MATLAB code-5: Using “hinfsyn/mixsyn” commands for H∞ synthesis (INCOM-

PLETE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

9 Guaranteed Cost Control (GCC) of Uncertain Discrete Time Systems with State and
Input Delays 59
9.1 The generic GCC Problem Setup & closed–loop Stability Analysis . . . . . . . . . . 59
9.2 GCC Analysis: Sufficient condition for the existence of SSF solution to GCC . . . . 60
9.3 GCC Synthesis for systems with state and input delay . . . . . . . . . . . . . . . . . 64

10 Three interesting (Sub)Cases of the generic GCC Problem (& Application to NCS) 69
10.1 GCC Analysis & Synthesis for uncertain DT systems with (only) Input Delay . . . . 69

10.1.1 GCC Analysis for systems with (only) Input Delay . . . . . . . . . . . . . . 69
10.1.2 GCC Synthesis for systems with (only) Input Delay . . . . . . . . . . . . . . 71

10.2 GCC Analysis & Synthesis for uncertain DT systems with (only) State Delay . . . . 75
10.2.1 GCC Analysis for systems with (only) State Delay . . . . . . . . . . . . . . 75
10.2.2 GCC Synthesis for systems with (only) State Delay . . . . . . . . . . . . . . 77

10.3 GCC Analysis & Synthesis for uncertain DT systems without Delays . . . . . . . . . 80
10.4 Special case: Robust Stabilization of DT systems with norm–bounded uncertainties

(no Delays - no GCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

11 GCC Analysis & Synthesis for NETWORKED CONTROL SYSTEMS (NCS) 85
11.1 NCS Dynamics & Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
11.2 Guaranteed Cost Control (GCC) Analysis for NCS - a sufficient condition . . . . . . 87
11.3 Synthesis of GCC for NCS (INCOMPLETE) . . . . . . . . . . . . . . . . . . . . . 88
11.4 Synthesis of Robust State Feedback Control for NCS (no GCC) . . . . . . . . . . . 89

12 An Alternative GCC Analysis & Synthesis for uncertain DT systems with (only) State
Delay (Guan et.al. IEE 1999) 92
12.1 Open–Loop GCC Analysis for systems with (only) State Delay . . . . . . . . . . . . 92
12.2 Sufficient condition for Robust GCC Stability of the Open Loop system . . . . . . . 93

L. Dritsas PhD 2020 3



L. Dritsa’s Notes on H∞, Robust Control, LMIs

13 D-Stability & LMI Regions (INCOMPLETE) 97
13.1 D-Stability and Pole Placement in LMI regions . . . . . . . . . . . . . . . . . . . . 97
13.2 A special case: Disk Stability & SSF Synthesis for Disc Stability . . . . . . . . . . . 98
13.3 Algorithm & MATLAB code11 for Disc Stabilization via SSF . . . . . . . . . . . . 101

14 Discrete Time Switched systems: stability analysis and control synthesis (INCOMPL) 106

15 Appendix A: Compendium of presented results (H∞ & GCC) 108
15.1 H∞ State Feedback Synthesis for CT LTI without Uncertainties . . . . . . . . . . . . 108
15.2 H∞ State Feedback Synthesis for CT LTI with Norm Bounded Uncertainties . . . . . 108
15.3 GCC problem setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
15.4 Result-1a: GCC SSF for Unc-DT-Sys with Input and State delay (most Generic Case)109
15.5 Result-1b: SSF Synthesis for Unc-DT-Sys with Input and State delay - no GCC,

only Robust Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
15.6 Result-2a: GCC SSF for Unc-DT-Sys with Input Delay (only) . . . . . . . . . . . . 111
15.7 Result-2b: SSF Synthesis for Unc-DT-Sys with Input Delay (only) - no GCC, only

Robust Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
15.8 Result-3a: GCC SSF for Unc-DT-Sys with State Delay (only) . . . . . . . . . . . . 113
15.9 Result-3b: SSF Synthesis for Unc-DT-Sys with State Delay (only) - no GCC, only

Robust Stabilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

16 Appendix B: The three “benchmark” systems used in simulations 115
16.1 The Stable Minimum Phase “benchmark” system . . . . . . . . . . . . . . . . . . . 115
16.2 The Stable Nonmiminimum phase “benchmark” system . . . . . . . . . . . . . . . 115
16.3 The Unstable “benchmark” system . . . . . . . . . . . . . . . . . . . . . . . . . . 115

L. Dritsas PhD 2020 4



L. Dritsa’s Notes on H∞, Robust Control, LMIs
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2 Mathematical Background

2.1 SVD

The following are standard properties for the singular values of any matrices (X and Y of appropriate
dimensions):

σmax(X + Y) ≤ σmax(X) + σmax(Y) (1)
σmax(XY) ≤ σmax(X)σmax(Y) (2)

(the “triangle inequality” and “Schwarz inequality” respectively).

Lemma 1 For any two symmetric and positive–definite matrices X,Y the following relation can be
proved

σmax(X) < σmin(Y)⇒ X < Y . (3)

Sketch of Proof: It is known that every symmetric positive–definite (?? and “simple”??) matrix
X can always be decomposed as X = UΛUT with U being a unitary matrix (UUT = I) and Λ a
diagonal matrix with the eigenvalues as diagonal elements. Since X is also assumed symmetric we
have XT = X = UΛUT and hence XXT = UΛUT UΛUT = UΛ2UT . Now...

...since σ(X) 4= [λ(XXT )]
1
2 we conclude that for symmetric positive–definite matrices the set of

its singular values coincides with the set of its strictly positive eigenvalues. On the other hand
every positive–definite matrix X satisfies Raleigh’s inequality (see (4)) λmin(X) ‖x‖2 ≤ xT Xx ≤
λmax(X) ‖x‖2. The quadratic xT (X − Y)x can now be bounded as follows: xT (X − Y)x = xT (X)x −
xT (Y)x ≤ λmax(X) ‖x‖2 − λmin(Y) ‖x‖2 = (λmax(X) − λmin(Y)) ‖x‖2 = (σmax(X) − σmin(Y)) ‖x‖2 < 0,
where the last inequality follows from the assumption σmax(X) < σmin(Y) and the proved equality
between the singular values and the (strictly positive) eigenvalues of SPD matrices. Hence, by defi-
nition, X < Y .

2.2 Properties of Real Symmetric (Hermitian) matrices

“Hermitian” matrices correspond to “Real Symmetric” when elements are real numbers.

• Let AH = ĀT , xH = x̄T , i.e. complex conjugate transpose. Matrix A is Hermitian if A = AH ⇔

xH Ax is real for all x ∈ Cn.

• Hermitian matrix D (i.e. D = DH) is positive definite if xH Dx > 0 for all x , 0.

• For Hermitian D, its eigenvalues are real. Furthermore if D is real (“real symmetric”) the
eigenvectors are real as well.

• A Hermitian D is also “simple” (i.e. distinct eigenvalues, λi , λ j) and eigenvectors corre-
sponding to distinct eigenvalues are orthogonal (xH

j xi = 0).

• For Hermitian D, the eigenvector matrix can be written as a unitary matrix, that is D =

QΛQH ,QQH = QH Q = I with Λ real and Q real if D real symmetric.

• For a Hermitian matrix D, we have D positive definite, (D > 0) if and only if (⇔) λi > 0,∀i.
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• Raleigh’s inequalities: For any Symmetric (Hermitian) matrix A

λmin(A)I ≤ A ≤ λmax(A)I
σ2

min(A)I ≤ AT A ≤ σ2
max(A)

λmin(A)xT x ≤ xT Ax ≤ λmax(A)xT x

• For any two Hermitian matrices M and N,

λmin(M + N) ≥ λmin(M) + λmin(N)
λmax(M + N) ≤ λmax(M) + λmax(N)

2.3 Properties of Positive Definite Matrices
• Addition of positive matrices: A > 0 and B > 0⇒ A + B > 0

• Block diagonal matrices: A > 0 and B > 0⇔
(

A 0
0 B

)
> 0

• Invertibility: A > 0⇒ A nonsingular.

• Convex cone property: A, B ≥ 0 and λ, µ > 0⇒ λA + µB ≥ 0.
The set of positive semidefinite matrices is a convex cone.

Recall also that

if P = PT > 0 then P−1 always exists, and moreover P−1 = (P−1)T > 0 (4)

2.4 Congruent Transformations
A Congruent Transformation preserves definiteness

• Suppose X ∈ Rn×m. Then for any Symmetric (Hermitian)
matrix A

A ≥ 0⇒ XT AX ≥ 0

• Suppose X ∈ Rn×m and Image{X} = Rn. Then for any Symmetric (Hermitian) matrix A

A ≥ 0⇔ XT AX ≥ 0

• Suppose X ∈ Rn×m and Ker{X} = {0}. Then for any Symmetric (Hermitian) matrix A

A > 0⇒ XT AX > 0 (5)

The inverse (⇐) is NOT true

2.5 Useful Matrix Inequalities
The (norm-2 induced vector-) norm ‖∆‖ of a matrix is defined as

‖∆‖2
4
= σmax(∆) =

√
λmax(∆T ∆),

and satisfies

‖∆‖ ≤ γ ⇔ σ2
max(∆) = λmax(∆T ∆) ≤ γ2 ⇔ ∆T ∆ ≤ γ2I

L. Dritsas PhD 2020 7
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2.5.1 “First Fundamental Matrix Inequality”

The following inequality (and many variations of it) has been extensively used in the Robust and
H∞ Control literature (where ∆ usually denotes unstructured uncertainty, and X,Y,∆ of compatible
dimensions)

Lemma 2 If ∆T ∆ ≤ Q∆, then for any α > 0,

XT ∆Y + YT ∆T X ≤ αXT X + (
1
α

)YT ∆T ∆Y ≤ αXT X + (
1
α

)YT Q∆Y (6)

Proof 3 Assuming ε1, ε2 > 0, expand the right part of the (trivial) inequality
0 ≤ [ε1X − 1

ε2
∆Y]T [ε1X − 1

ε2
∆Y] into

0 ≤ [ε1X − 1
ε2

∆Y]T [ε1X − 1
ε2

∆Y] = ε2
1 XT X + 1

ε2
2
YT ∆T ∆Y − ε1

ε2
[XT ∆Y + YT ∆T X]

⇔
ε1
ε2

[XT ∆Y + YT ∆T X] ≤ ε2
1 XT X + 1

ε2
2
YT ∆T ∆Y]. The proof is completed by multiplying both sides

by ε2
ε1
> 0 and then by setting α = ε1ε2 > 0, while using ∆T ∆ ≤ Q∆.

If it is further assumed that ∆ is norm bounded as

‖∆‖2 = σmax(∆) ≤ γ ⇔ ∆T ∆ ≤ γ2I

the previous inequality becomes

XT ∆Y + YT ∆T X ≤ αXT X + (
γ2

α
)YT Y, ‖∆‖ ≤ γ (7)

Remark 4 For the admissible choices α = γ or α = γ2, inequality (7) becomes respectively

• XT ∆Y + YT ∆T X ≤ γXT X + γYT Y, ‖∆‖2 ≤ γ

• XT ∆Y + YT ∆T X ≤ γ2XT X + YT Y, ‖∆‖2 ≤ γ

2.5.2 Variations of the “First Fundamental Matrix Inequality”

Many variations of the “Fundamental inequality” appear in the literature of Uncertain (and Time
Delayed) Systems e.g.

1.

0 ≤ [Z1/2X −
1
α

Z−1/2Y]T [Z1/2X −
1
α

Z−1/2Y]⇔

XT Y + YT X ≤ αXT ZX + (
1
α

)YT Z−1Y with α, Z > 0

(which is proved by expanding 0 ≤ [Z1/2X − 1
α

Z−1/2Y]T [Z1/2X − 1
α

Z−1/2Y]⇔
XT Y + YT X ≤ αXT ZX + ( 1

α
)YT Z−1Y with α, Z > 0. )

2.

XT ZY + YT ZT X =

αXT X +
1
α

YT ZT ZY − α[X −
1
α

ZY]T [X −
1
α

ZY]

≤ αXT X +
1
α

YT ZT ZY with α, Z > 0

L. Dritsas PhD 2020 8
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which can be easily proved by noticing that

0 ≤ α
[
X −

1
α

ZY
]T [

X −
1
α

ZY
]

= α

[
XT X +

1
α2 YT ZT ZY −

1
α

XT ZY −
1
α

YT ZT X
]

= αXT X +
1
α

YT ZT ZY − XT ZY − YT ZT X

⇔ XT ZY + YT ZT X = αXT X +
1
α

YT ZT ZY − α
[
X −

1
α

ZY
]T [

X −
1
α

ZY
]

α, Z > 0

3. more variations to be written...

4. . . .

2.5.3 “Second Fundamental Matrix Inequality (Lemma)”

(Wang & Xie 1992, Xie 1996, Petersen 1987) see

Lemma 5 Given matrices G,M,N of compatible dimensions with G symmetric, the inequality

G + M∆N + NT ∆T MT < 0

holds for all ∆ satisfying ∆T ∆ ≤ R if and only if (⇔) there exists a constant ε > 0 such that

G + εMMT +
1
ε

NT RN < 0

Remark 6 Using Schur’s complements the last inequality can be equivalently written as (set R = I
for simplicity)

G + ε2MMT +
1
ε2 NT N < 0 ⇔


G

(
1
ε
NT εM

)( 1
ε
N

εMT

)
−I2n

 < 0

⇔


G

(
εM 1

ε
NT

)(
εMT

1
ε
N

)
−I2n

 < 0

Variation with σmax(∆) ≤ δ⇔ ∆T ∆ ≤ δ2I also useful...

Lemma 7 Given matrices G,M,N of compatible dimensions with G symmetric, then

G + M∆N + NT ∆T MT < 0

holds for all ∆ satisfying σmax(∆) ≤ δ if and only if there exists a constant ε > 0 such that

G + εMMT +
δ2

ε
NT N < 0

L. Dritsas PhD 2020 9
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2.5.4 “Third Fundamental Matrix Inequality” and the Matrix Inversion Lemma

The inequality presented in Lemma 9 below (and variations) has also been extensively used in the
Robust Control literature Its proof needs the “Matrix Inversion Lemma” which states that

Lemma 8

[A1 + A2A3A4]−1 = A−1
1 − A−1

1 A2[A4A−1
1 A2 + A−1

3 ]−1A4A−1
1 (8)

Lemma 9 Let A,M,N,∆ be real matrices of appropriate dimensions with ‖∆‖2 < 1. Then for P > 0
and scalar ε > 0 satisfying εI − MT PM > 0,

(A + M∆N)T P(A + M∆N) ≤ AT PA + AT PM(εI − MT PM)−1MT PA + εNT N (9)

Sketch of Proof of inequality (9) in Lemma 9.

Proof 10 Start by forming the “square” 0 ≤ YT Y where
Y 4

= [εI − MT PM]−
1
2 MT PA − [εI − MT PM]

1
2 ∆N and hence

YT = AT PM[εI − MT PM]−
1
2 − NT ∆T [εI − MT PM]

1
2 .

Forming the square YT Y we get:
0 ≤ YT Y = AT PM[εI − MT PM]−1MT PA − AT PM∆N − NT ∆T MT PA + NT ∆T [εI − MT PM]∆N ⇔

AT PM∆N + NT ∆T MT PA ≤ AT PM[εI − MT PM]−1MT PA +

NT ∆T [εI − MT PM]∆N.

Adding now the “missing terms” AT PA+(NT ∆T MT )P(M∆N) to both sides of the last inequality,
the LHS becomes the “complete square” (A + M∆N)T P(A + M∆N) and hence

(A + M∆N)T P(A + M∆N) ≤ AT PA + AT PM[εI − MT PM]−1MT PA + NT ∆T [εI − MT PM]∆N +

(NT ∆T MT )P(M∆N).

The last two terms are bounded as
NT ∆T [εI − MT PM]∆N + (NT ∆T MT )P(M∆N) = NT ∆T [εI − MT PM + MT PM]∆N =

εNT ∆T ∆N ≤ εNT N and the (sketch of) proof is complete.

Applying the “Matrix Inversion Lemma” (8) to the expression (P−1 − ε−1 − MMT )−1 in (9) of
Lemma 9 we get a useful alternative of (9) since (P−1−ε−1−MMT )−1 = P−PM[MT PM−εI]−1MT P
and hence AT [P−1 − ε−1MMT ]−1A = AT PA + AT PM(εI −MT PM)−1MT PA. Inequality (9) can then
be equivalently expressed as

Lemma 11 Let A,M,N,∆ be real matrices of appropriate dimensions with ‖∆‖2 < 1. Then for
P > 0 and scalar ε > 0 satisfying εI − MT PM > 0,

(A + M∆N)T P(A + M∆N) ≤ AT [P−1 − ε−1MMT ]−1A + εNT N (10)

The above inequality is also used with P in lieu of P−1 and ε−1 in lieu of ε i.e.
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Lemma 12 Let A,M,N,∆ be real matrices of appropriate dimensions with ‖∆‖2 < 1. Then for
P > 0 and scalar ε > 0 satisfying P − εMMT > 0

(A + M∆N)T P−1(A + M∆N) ≤ AT [P − εMMT ]−1A +
1
ε

NT N (11)

See also Lemma (12).

Another useful inequality is derived by expanding (A + M∆N)T P(A + M∆N) in (9) and then
cancelling the term AT PA from both sides. Indeed since (A + M∆N)T P(A + M∆N) = AT PA +

AT PM∆N + NT ∆T MT PA + (NT ∆T MT )P(M∆N) and (9) immediately yields

Lemma 13 Let A,M,N,∆ be real matrices of appropriate dimensions with ‖∆‖2 < 1. Then for
P > 0 and scalar ε > 0 satisfying εI − MT PM > 0,

AT PM∆N + NT ∆T MT PA + (NT ∆T MT )P(M∆N) ≤ AT PM(εI − MT PM)−1MT PA + εNT N (12)

2.6 Schur Complement and LMIs
Lemma 14 The following statements are equivalent (“⇔”)

[
X Y

YT Z

]
< 0⇔



Z < 0 and X − YZ−1YT < 0

X < 0 and Z − YT X−1Y < 0[
Z YT

Y X

]
< 0,

(13)

Schur’s Lemma (13) also valid with “>” inequality sign.

Remark 15 [
X Y

YT Z

]
< 0⇒ X < 0 and Z < 0

The following Lemmas are Direct Application of Schur’s Lemma (13)

Lemma 16 (ε > 0) A B DT

BT C ET

D E −εI

 < 0 ⇔

[
A B

BT C

]
+

1
ε

[
DT

ET

] [
D E

]
< 0

⇔

 −εI D E
DT A B
ET BT C

 < 0

(Sketch of Proof: Conceive the RHS as X − YZ−1YT < 0 with X =

[
A B

BT C

]
, Y =

[
DT

ET

]
,

Z = −εI < 0 and apply Schur’s Lemma)
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Lemma 17 (Generalization of Lemma 16 with P > 0) A B DT

BT C ET

D E −P

 < 0 ⇔

[
A B

BT C

]
+

[
DT

ET

] (
P−1

) [
D E

]
< 0

⇔

 −P D E
DT A B
ET BT C

 < 0
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3 Lyapunov Stability Analysis and Static State Feedback (SSF)
Synthesis via LMI

3.1 Continuous Time (CT) Lyapunov inequality expressed as LMI
Recall that the Continuous–Time (CT) LTI system ẋ(t) = Ax(t), is exponentially stable iff there
exists P = PT > 0 such that

AT P + PA < 0, P = PT > 0

Taking into account that

• The Lyapunov inequalities (1) AT P + PA < 0 and (2) P > 0 are already in LMI format
(depend affinely on P)

• multiple LMIs can be combined into a single LMI

[
AT P + PA 0

0 −P

]
< 0⇔

[
−AT P − PA 0

0 P

]
> 0 (14)

Conclusion: The problem of stability verification for ẋ(t) = Ax(t) is transformed into a strict fea-
sibility test for the LMI (14), whose solution P (if exists) defines the Quadratic Lyapunov Function
V(x) = xT Px, which certifies asymptotic stability.

3.2 SSF Synthesis via LMI for CT–LTI systems without uncertainty
For the CT LTI system with Static (“memoryless”) State Feedback

ẋ(t) = Ax(t) + Bu(t), u(t) = Kx(t),

the closed–loop system is stable iff there exists P = PT > 0 such that

(A + BK)T P + P(A + BK) < 0. (15)

The “congruence + change of variables” trick (20 years old !!!)
Though (15) is not an LMI in P,K it can be transformed into an LMI using the new variables

S = P−1 > 0, W = KS = KP−1. Recall that (i) if P = PT > 0 then S = P−1 always exists and
is also symmetric positive definite (S = S T > 0) and that (ii) a congruent transformation preserves
definiteness.

Pre-, Post- multiplying (15) by S and using W = KP−1 = KS , WT = P−1KT = S KT ,

S
(
AT P + KT BT P + PA + PBK

)
S < 0⇔

S AT PS + S KT BT PS + S PAS + S PBKS < 0⇔
S AT + WT BT + AS + BW < 0

which is an LMI in S , W !!!
The algorithm for Continuous–Time State Feedback design via LMI is thus:
Solve the LMI feasibility problem

−S < 0
S AT + WT BT + AS + BW < 0 (16)

for S , W and (if solution exists) get the static state feedback gain as K = WS −1. Moreover the
quadratic Lyapunov function xT Px = xT S −1x proves closed loop stability.
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3.3 SSF Synthesis via LMI for CT–LTI polytopic uncertain systems
Robust control deals with the problem of inexact or (intentionally) simplified system models and the
design objective is that the robust controller will perform “satisfactorily” in terms of stability and
performance when applied on the actual (uncertain) system

Problem Statement: Using the “standard Robust Control Paradigm” (Figure 1) the objective
is to find an optimal control strategy u(t) = Kx(t) or u(t) = Ky(t) such that the closed–loop system
enjoys good robustness properties. The uncertainties are (possibly) measurable in real–time, and can
(in this case) be used for feedback, i.e “gain–scheduled”

Figure 1: Robust Control Paradigm

The above methodology , expressed via the (16) LMI, can be generalized for the robust stabi-
lization via state feedback of a polytopic uncertain system as following:

Consider the polytopic system with static state feedback

ẋ(t) = A(t)x(t) + Bu(t), u(t) = Kx(t), A(t) ∈ co(A1, . . . , AL)

The closed–loop system is (quadratically) stable iff

P = PT > 0, (Ai + BK)T P + P(Ai + BK) < 0, i = 1, ..., L

and the corresponding LMI methodology now becomes

−S < 0
S AT

i + WT BT + AiS + BW < 0, i = 1, ..., L (17)

Output feedback strategy u(t) = Ky(t) on the other hand is in general “much harder” than state
feedback. This difficulty can be illustrated by presenting the case of constant output feedback for
polytopic systems.

ẋ = A(t)x(t) + Bu(t), y(t) = Cx(t), u(t) = Ky(t), A(t) ∈ Co(A1, ..., AL)

where the closed–loop system is stable if

P = PT > 0, (Ai + BKC)T P + P(Ai + BKC) < 0, i = 1, ..., L (18)

Output feedback strategy u(t) = Ky(t) gives LMIs only in a handful of cases since no “Convexi-
fication” is possible in general.
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3.4 SSF Synthesis via LMI for CT–LTI systems with norm–bounded uncer-
tainty

Open–loop CT system dynamics with norm–bounded uncertainties in both the system and the input
matrices, i.e.

ẋ = (A + ∆A)x(t) + (B + ∆B)u(t), x ∈ <n, u ∈ <m (19)

with

[∆A ∆B] = DaF [Ea Eb] (20)

Da, Ea, Eb known and constant, and the unknown (time-varying) matrix F(t) satisfying FT F ≤ I.
The closed–loop dynamics with u(t) = Kx(t) are

ẋ = [A + BK + DaF(Ea + EbK)] xk
4
= AC x(t) (21)

with the obvious definition for the uncertain closed-loop matrix AC .
Defining the “quadratic candidate Lyapunov function function V = x(t)T Px(t), with P > 0 being

a SPDef matrix of appropriate dimensions 0 < PT = P ∈ <n×n, the “wish” for V̇ < 0 along the
trajectories of the closed-loop system can be equivalently expressed as AT

C P + PAC < 0 or

(A + BK)T P + ((Ea + EbK)T FT DT
a )P + P(A + BK) + PDaF(Ea + EbK) < 0

Introducing S = P−1, W = KP−1 = KS , and Pre-, Post- multiplying the last inequality by S ,
can write equivalently

S (A + BK)T PS + S P(A + BK)S + S [((Ea + EbK)T FT DT
a )P]S + S PDaF(Ea + EbK)S < 0⇔

S (A + BK)T + (A + BK)S + S T [DaF(Ea + EbK)]T + DaF(Ea + EbK)S < 0⇔
(AS + BW) + (S AT + WT BT ) + DaF(EaS + EbW) + (EaS + EbW)T FT DT < 0

The last matrix inequality is clearly of the form G + M∆N + NT ∆T MT < 0, with GT = G 4
=

(AS + BW) + (S AT + WT BT ) and hence...,
Lemma 5 can be used to transform it into the following equivalent “G + εMMT + 1

ε
NT RN”

inequality (valid ∀ admissible F and ε > 0) i.e.

G + εDaDT
a +

1
ε

(EaS + EbW)T (EaS + EbW) < 0⇔

(G + εDaDT
a ) − (EaS + EbW)T (−εIn)−1(EaS + EbW) < 0⇔

[
(AS + BW) + (S AT + WT BT ) + εDaDT

a (EaS + EbW)T

(EaS + EbW) −εIn

]
< 0 (22)

If this last LMI has a feasible solution, in terms of the variables {ε, W, S }, then the state feedback
control law u(t) = WS −1x(t) = Kx(t) is a robustly stabilizing control law.
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3.5 Discrete Time (DT) Lyapunov inequality expressed as LMI
Recall that the Discrete–Time (DT) LTI system xk+1 = Axk, is exponentially stable iff there exists
P = PT > 0 such that AT PA − P < 0. Manipulating the Lyapunov inequalities AT PA − P < 0, P =

PT > 0 as follows:

AT PA − P < 0, P = PT > 0⇔
−P + AT PA < 0, − P < 0⇔

−P − AT (−P−1)−1A < 0, − P < 0 (23)

and using Schur’s Lemma 14 (version Z − YT X−1Y < 0, X < 0 with Z → −P, Y → A,
X → −P−1 ⇔ X−1 → −P < 0) can express the Lyapunov inequalities AT PA−P < 0, P = PT > 0
as [

−P−1 A
AT −P

]
< 0⇔

[
−P AT

A −P−1

]
< 0 (24)

Remark 18 Working with the “>” version of DT Lyapunov we equivalently have AT PA− P < 0⇔
P − AT PA > 0⇔ (Schur’s Lemma)[

P−1 A
AT P

]
> 0⇔

[
P AT

A P−1

]
> 0 (25)

Note that (24), (25) are NOT LMIs ! hence an alternative manipulation is needed...

DT Lyapunov LMI 1: A first alternative expression can be derived via direct manipulation of
(23) while recalling that P = PT > 0

AT PA − P < 0, P = PT > 0⇔
P − AT (PP−1)PA > 0, P > 0⇔

P − (PA)T (P−1)(PA) > 0, P > 0⇔︸                                          ︷︷                                          ︸
use version Z − YT X−1Y > 0, X > 0

of Schur’s Lemma

⇔

[
P PA

AT P P

]
> 0⇔

[
P AT P

PA P

]
> 0 (26)

Now (26) is a “feasibility” LMI on matrix variable P.

DT Lyapunov LMI 2: A second alternative expression can be derived by pre– and post–
multiplying (23) by S 4

= P−1 (a congruent transformation with S 4
= P−1) while recalling that

• if P = PT > 0 then S = P−1 always exists and is also SPD (i.e. S = S T > 0)

• a congruent transformation preserves definiteness

Thus

−P < 0⇔ −P−1PP−1 < 0⇔ −P−1 = −S < 0
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and

−P + AT PA < 0 ⇔ P−1
[
−P + AT PA

]
P−1 < 0

⇔ −P−1 − (AP−1)T (−P−1)−1(AP−1) < 0
⇔ −S − (AS )T (−S )−1(AS ) < 0︸                               ︷︷                               ︸

Z − YT X−1Y < 0, X < 0

(use Schur’s Lemma 14 with Z → −P−1 = −S , Y → AP−1 = AS , X → −P−1 = −S < 0),

⇔

[
−S AS

S AT −S

]
< 0⇔

[
−S S AT

AS −S

]
< 0, S 4

= P−1 (27)

Now (27) is a “feasibility” LMI on matrix variable S .

Remark 19 The same result (27) could have been directly derived from (24) via the following con-
gruent transformation: [

−P−1 A
AT −P

]
< 0⇔[

I 0
0 P−1

] [
−P−1 A

AT −P

] [
I 0
0 P−1

]
< 0⇔[

−P−1 AP−1

P−1AT −P−1

]
< 0 i.e.

[
−S AS

S AT −S

]
< 0

Conclusion: The problem of stability verification for the Discrete–Time LTI system xk+1 = Axk

is transformed into a strict LMI feasibility test for the LMIs (26) or (27).
These LMIs are two alternative & equivalent “tests” for the (Quadratic) Stability of the examined

Discrete–Time LTI system.
The solution(s) P = S −1 or S respectively, if exist, define the Quadratic Lyapunov Function

V(xk) = xT
k Pxk, which certifies asymptotic stability.

3.6 SSF Synthesis via LMI for DT–LTI systems without uncertainty

Fact: For the DT LTI system with static State Feedback

xk+1 = Axk + Buk, uk = Kxk,

the closed–loop system is stable iff there exists P = PT > 0 such that

(A + BK)T P(A + BK) − P < 0. (28)

which is not an LMI in P,K, but can be transformed into one by using the new variables S = P−1 >
0, W = KP−1 = KS and... ...the “change of variables” trick again !!!: Pre-, Post- multiplying (28)
by the symmetric positive definite matrix S = P−1 and using the new variables S = P−1 > 0, W =

KP−1 = KS , while recalling that “a congruent transformation preserves definiteness”, Lyapunov
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inequality (28) transforms into

S
(
(AT + KT BT )S −1(A + BK) − S −1

)
S < 0⇔

(S AT + S KT BT )S −1(A + BK)S − S S −1S < 0⇔
(S AT + WT BT )S −1(AS + BW) − S < 0⇔

−S − (S AT + WT BT )(−S )−1(AS + BW) < 0

The last matrix inequality can be expressed as an LMI feasibility problem in terms of the matrix
variables S , W by invoking Schur’s Lemma 14 (use the “Z − YT X−1Y < 0, X < 0” version with
Z → −P−1 = −S < 0, Y → (AS + BW), X → −S )

−S − (S AT + WT BT )(−S )−1(AS + BW) < 0⇔[
−S AS + BW

S AT + WT BT −S

]
< 0⇔

[
−S S AT + WT BT

AS + BW −S

]
< 0 (29)

The algorithm for Discrete–Time State Feedback design via LMI is thus:
Solve the LMI feasibility problem (29) for S , W and then get the static state feedback gain as

K = WS −1.

3.7 SSF Synthesis via LMI for DT–LTI systems with polytopic or norm–
bounded uncertainty

The procedure presented in previous section can be generalized for discrete time polytopic systems
as done for the CT case (see (17)).

The norm–bounded uncertainty case is covered in another section (see 10.4 further down).
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4 Bounded Real Lemma for Continuous Time systems (CT-BRL)

4.1 BRL as a Robust Quadratic Stability Criterion for CT-LTI Uncertain
Systems

The BRL presentation starts by investigating the Robust Quadratic Stability of the autonomous
continuous–time LTI uncertain (CTLTI) System

ẋ(t) = A(∆)x(t) = (A0 + ∆A)x(t) = (A0 + MA∆ANA)x(t) (30)

Interpretation of the structure of the uncertain system matrix A(∆) = A0 + MA∆ANA:

• A0 is the nominal (known and time–invariant) system matrix,

• MA,NA are known constant matrices capturing the uncertainty structure

• ∆A being an uncertain matrix capturing the uncertainty magnitude via the norm bound relation
σmax(∆A) ≤ δA

4
= 1

γA
, i.e.

Recall that σmax(∆) = ‖∆‖ ≤ γ ⇔ λmax(∆T ∆) ≤ γ2 ⇔ ∆T ∆ ≤ γ2I

Remark 20 It is intuitively expected that the nominal matrix A0 has to be (Hurwitz) stable...otherwise...for
the admissible value ∆ = 0... See remark (24) below

Remark 21 In most of the presentation below, for notation convenience only, we temporarily omit
the “A” subscripts from MA,∆A,NA writing simply M,∆,N. Similarly we temporarily omit the “0”
subscript from the nominal matrix A0 writing simply “A”.

The problem is thus formulated as: Investigate the conditions for robust quadratic stability of the
norm bounded uncertain system

ẋ(t) = A(∆)x(t) = [A + M∆N]x(t), with σmax(∆) ≤ δ 4=
1
γ

(31)

Definition: The CTLTI uncertain system (31) is said to be robustly stable if (31) is asymptoti-
cally stable for all A(∆).

Alternative Definition: Let Ω be the set of stable (“Hurwitz”) matrices i.e.

Ω
4
= X ∈ <n×n : maxRe{λ(X)} < 0

Robust stability is then (re)defined as follows:”If A ⊆ Ω then the CTLTI uncertain system (31)
is robustly stable”.

Problem: The set of all stable matrices Ω is not a convex set (it is a non convex cone).

Remark 22 Note that (30),(31) can be written as the feedback interconnection of the system

ẋ(t) = Ax(t) + Mw(t), z(t) = Nx(t), (32)

with the uncertain element w(t) = ∆z (see figure 2 below). This “feedback representation” will later
clarify the relation between BRL and the Small Gain Theorem.
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Figure 2: Relating BRL to SmallGain Theorem

Taking the time derivative of V(x) = xT Px, P = PT > 0 along the trajectories of (31),(32)

V̇(x(t)) = 2xT P[A + M∆N]x

= xT [AT P + PA + PM∆N + NT ∆T MT P]x

and using the “fundamental inequality” (7) along with the assumption ‖∆‖ ≤ δ, the term
PM∆N + NT ∆T MT P is bounded as

(PM)∆N + NT ∆T (MT P) ≤ αPMMT P + (
δ2

α
)NT N︸                                                              ︷︷                                                              ︸

XT ∆Y + YT ∆T X ≤ αXT X + ( δ
2

α
)YT Y

Using the admissible value α = δ > 0 for the positive “tuning (scalar) variable” α, the previous
inequality (bound) becomes

(PM)∆N + NT ∆T (MT P) ≤ δPMMT P + δNT N

and hence V̇(x(t)) < xT [AT P + PA + δPMMT P + δNT N]x

4.1.1 First Version of BRL (no feed–through term)

It is now clear clear that a sufficient condition for the (Robust Quadratic) Asymptotic Stability for
(31) is

AT P + PA + δPMMT P + δNT N < 0, P > 0 (33)

Writing the last inequality as AT P + PA + δNT N − PM(− 1
δ
I)−1(PM)T < 0 and using Schur’s

Lemma (with “Z′′ → − 1
δ
I < 0), the conditions in (33) are expressed equivalently (⇔) as an LMI[

AT P + PA + δNT N PM
MT P (− 1

δ
I)

]
< 0, P > 0 (34)

LMI (34) is the first version of BRL in its “2 × 2” formulation, and its Feasibility guarantees
Robust Quadratic Stability for the uncertain system (31).
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Writing inequality (34) as[
PA + AT P PM

MT P − 1
δ
I

]
+ δ

[
NT

0

] [
N 0

]
︸                                                    ︷︷                                                    ︸ < 0

[
A B

BT C

]
+ 1

ε

[
DT

ET

] [
D E

]
and using Lemma (16), we equivalently (⇔) get

 PA + AT P PM NT

MT P − 1
δ
I 0

N 0 − 1
δ
I

︸                              ︷︷                              ︸ < 0 (35)

 A B DT

BT C ET

D E −εI


LMI (35), along with the (LMI) constraint P > 0, is the first version of BRL in its “3 × 3”

formulation and is of course equivalent to LMI (34).

Remark 23 Recall that

• “Robust Quadratic Stability” = “simultaneous stability”=“a single Lyapunov matrix P proves
stability for the whole uncertainty range”

• Recall: Quadratic stability⇒ robust stability⇒ vertex stability. The converse is NOT true

Remark 24 Recalling the remark 15 on matrix definiteness, it is clear that the (1, 1) element of the
LMI (35) “demands” that PA+AT P < 0 i.e. BRL expressed via LMI (35) demands that the nominal
matrix A is “Hurwitz” stable !!!...See also the intuitive remark 20.

4.1.2 First Version of BRL with feed–through term

Generalize the system dynamics in (32) by adding a “feed–through” term

ẋ(t) = Ax(t) + Mw(t), z(t) = Nx(t) + Dw(t) (36)

with the uncertain element w(t) = ∆z. Provided that (I − ∆D)−1 exists, can write

w = ∆ (Nx(t) + Dw(t))⇔ w = (I − ∆D)−1∆Nx (37)

Substitution of w = (I−∆D)−1∆Nx into (36) provides an “LFT” representation of the uncertainty
(Linear Fractional Transformation)

ẋ(t) = [A + M(I − ∆D)−1∆N]x(t) (38)

The requirement for non–singularity of (I − ∆D) is a well posedeness requirement which is
equivalent to

(I − ∆D) nonsingular ∀∆ ⇔ I > δ2DT D (39)

Using the same math as before, the (“complete”) version of BRL with feed–through term be-
comes
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AT P + PA + δNT N + (PM + δNT D)[ 1
δ
I − δDT D]−1(MT P + δDT N) < 0

m

P > 0,
[

AT P + PA + δNT N PM + δNT D
MT P + δDT N − 1

δ
I + δDT D

]
< 0

m

P > 0,

 AT P + PA PM NT

MT P − 1
δ
I DT

N D − 1
δ
I

 < 0 (40)

Looking at the lower right block of (40), it is clear that the above condition implies[
− 1
δ
I DT

D − 1
δ
I

]
< 0⇔ 0 > −

1
δ

I + δDT D⇔ I > δ2DT D

which guarantees well posedeness via (39).

Corollary 25 (BRL) The uncertain CT–LTI system ẋ(t) = [Ax(t) + M(I − ∆D)−1∆N]x(t) is robustly
stable for any ‖∆‖ ≤ δ if the LMI in (40) is feasible with P = PT > 0.

4.1.3 First Version of BRL: RECAPITULATION

We “recap” all previous results (including the feed–through versions of BRL) using the variable
γ
4
= 1

δ
from (30),(31). This makes our notation same to standard MATLAB notation...

IF there exists P = PT > 0 satisfying

P > 0,
 PA + AT P + 1

γ
NT N PM + 1

γ
NT D

MT P + 1
γ

DT N −γI + 1
γ

DT D

 < 0

m

P > 0,

 PA + AT P PM NT

MT P −γI DT

N D −γI

 < 0 (41)

THEN the Uncertain CT–LTI system

ẋ(t) = [Ax(t) + M(I − ∆D)−1∆N]x(t),

is robustly stable for any norm bounded uncertainty ∆ satisfying σmax(∆) = ‖∆‖ ≤ δ
4
= 1

γ
.

Computing the Maximum Allowed Uncertainty is now a “mincx” problem [8]:

min γ over P > 0 and γ > 0 under the LMI constraint (41)

Remark 26 Recall remark 23 i.e. “A single P proves stability for the whole uncertainty range in
system matrix A → Quadratic Stability” and check MATLAB’s “quadstab” command (Quadratic
stability of polytopic or affine parameter-dependent systems – over the entire parameter range and
for arbitrarily fast parameter variations).

BRL (40) is now rewritten in terms of the (CT-ULTI) System Dynamics (30) in order to make
clear its interpretation as a Robust Quadratic Stability Condition. See Remark 21. The feed–through
term is also included for generalization.
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The Uncertain CT–LTI system

ẋ(t) = [A0 + MA(I − ∆AD)−1∆NA]x(t)

(which is (30) generalized in (38) via the inclusion of the feed–through term), with A0 being the nom-
inal (known and time invariant) system matrix, is robustly stable for any norm bounded uncertainty
∆A satisfying σmax(∆A) = ‖∆A‖ ≤ δA

4
= 1

γA
if there exists P = PT > 0 satisfying

P > 0,
[

PA0 + AT
0 P + δANT

A NA PMA + δANT
A D

MT
A P + δADT NA − 1

δA
I + δADT D

]
< 0

m

P > 0,


PA0 + AT

0 P PMA NT
A

MT
A P − 1

δA
I DT

NA D − 1
δA

I

 =

 PA0 + AT
0 P PMA NT

A
MT

A P −γAI DT

NA D −γAI

 < 0 (42)

Remark 27 For the “no feed–through case” in (30), i.e. for ẋ(t) = [A0 + MA∆ANA]x(t), trivially set
D = 0. Also recall that the (1, 1) element of the LMI (42) “demands” that the nominal matrix A0 is
Hurwitz stable !!!

4.1.4 Second Version of BRL (no feed–through term)

Several variations of BRL in literature. For example, starting from the bound (33) on the Lyapunov
derivative and selecting the admissible value α = δ2 > 0 instead of α = δ > 0 for the positive
“tuning variable” α, the previous inequality now becomes

(PM)∆N + NT ∆T (MT P) ≤ δ2PMMT P + NT N

and carrying out the same “math”, a sufficient condition for Robust Quadratic Asymptotic Stability
of (31) is P > 0 along with (

AT P + PA + δ2PMMT P + NT N
)

< 0
m(

AT P + PA + NT N − PM(− 1
δ2 I)−1(PM)T

)
< 0

m[
AT P + PA + NT N PM

MT P (− 1
δ2 I)

]
< 0

m[
PA + AT P PM

MT P − 1
δ2 I

]
−

[
NT

0

]
(−I)

[
N 0

]
m PA + AT P PM NT

MT P − 1
δ2 I 0

N 0 −I

 =

 PA + AT P PM NT

MT P −γ2I 0
N 0 −I

 < 0 (43)

4.1.5 Second Version of BRL with feed–through term

BRL (43) will now be

• rewritten in terms of the (CT-ULTI) System Dynamics in (30) making clearer its interpreta-
tion as a Robust Quadratic Stability Condition
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• generalized by adding a feed–through term (see (38))

Corollary 28 The system ẋ(t) = [A0 + MA(I − ∆AD)−1∆NA]x(t) in (30) is robustly stable for any
‖∆A‖ ≤ δA

4
= 1

γA
if there exists P = PT > 0 satisfying

P > 0,
 PA0 + AT

0 P + NT
A NA PMA + NT

A D
MT

A P + DT NA DT D − 1
δ2

A
I

 < 0

m

P > 0,


PA0 + AT

0 P PMA NT
A

MT
A P − 1

δ2
A

I DT

NA D −I

 =

 PA0 + AT
0 P PMA NT

A
MT

A P −γ2
AI DT

NA D −I

 < 0 (44)

As before, the lower right block in (44) guarantees well posedeness via −1
δ2

A
I DT

D −I

 < 0⇔ I > δ2
ADT D

Remark 29 Compare (44) to (42).

4.1.6 Second Version of BRL: RECAPITULATION

We “recap” all previous results of the second version of BRL (including the feed–through versions)
and using γ 4= 1

δ
.

The Uncertain CT–LTI system ẋ(t) = [Ax(t) + M(I − ∆D)−1∆N]x(t) is robustly stable for any
norm bounded uncertainty ∆ satisfying σmax(∆) = ‖∆‖ ≤ δ

4
= 1

γ
if there exists P = PT > 0 satisfying

any of the four equivalent inequalities below (starting from the “Riccati–like” inequality and ending
with the easily memorized (45)):

AT P + PA + NT N + (PM + NT D)
[
γ2I − DT D

]−1
(MT P + DT N) < 0

m[
AT P + PA + NT N PM + NT D

MT P + DT N DT D − γ2I

]
< 0

m PA + AT P PM NT

MT P −γ2I DT

N D −I

 < 0

m
I 0
A M
0 I
N D


T 

0 P 0 0
P 0 0 0
0 0 −γ2I 0
0 0 0 I




I 0
A M
0 I
N D

 (45)

4.1.7 A Congruent Transformation relates the two BRL Versions

Compare the two BRL versions:

• First Version is given (in terms of γ = 1
δ
) in (41) (equivalently (42)),
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• Second Version is given (in terms of γ2 = 1
δ2 ) in (45) (equivalently (43), (44)).

Starting from the Riccati inequality (43) of Second Version (the one without a feed–through
term for easiness of presentation - generalized in (45)) i.e. AT P + PA + δ2PMMT P + NT N < 0 , we
shall constructively show that via a Congruent Transformation one can get inequality (41) of First
Version.

Define Y 4
= 1

γ
P. Then

(43)⇔ AT P + PA + δ2PMMT P + NT N < 0
m

AT P + PA + 1
γ2 PMMT P + NT N < 0
m

γ
(
AT ( 1

γ
P) + ( 1

γ
P)A

)
+ ( 1

γ
P)MMT ( 1

γ
P) + NT N < 0

m

γ
(
AT Y + YA

)
+ Y MMT Y + NT N < 0
m[

γ
(
AT Y + YA

)
+ NT N Y M

MT Y −I

]
< 0

m
γ
(
AT Y + YA

)
Y M NT

MT Y −I 0
N 0 −I

 < 0

m

congruence: pre- and post- multiply by
1
√
γ

I 0 0
0

√
γI 0

0 0
√
γI


m AT Y + YA Y M NT

MT Y −γI 0
N 0 −γI

 < 0

which is (41) of First Version with D = 0 and Y instead of P !!!
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4.2 Relating BRL and H∞ system norm implies a Disturbance Rejection in-
terpretation

Apart from the “Robust Stability interpretation”, BRL plays an essential role in the “Energy Gain”
computation of Stable Linear Systems !!! This BRL “interpretation” is a fundamental result relat-
ing Time–Domain and Frequency–Domain (H∞–norm) system characteristics to the feasibility of a
strict LMI (BRL) !!!

• Connection with “Small Gain Theorem”...

• Many variations (KYP,Pos–Real Lemma, etc.)

• The concept of “Dissipativity” is behind all this...

Consider the LTI System,

ẋ(t) = Ax(t) + Bw(t),
z(t) = Cx(t) + Dw(t)

z = T (s)w with T (s) = C(sI − A)−1B + D (46)

and assuming A is (Hurwitz) stable and x(0) = 0... can interpret w(t) is an “exogenous distur-
bance”, whose effect on z(t) we wish to analyze (minimize)

• for deterministic “w,z”→ “System Gain” notions

• for white noise “w”→ asymptotic output variance

• for impulse “w”→ output energy

Signal Energy (“L2”) Gain: The Energy Gain of a signal x(t) is

‖x(t)‖2 =

√√√√√ ∞∫
0

‖x(t)‖2dt, with ‖x(t)‖2 = xT (t)x(t). (47)

System Energy Gain: Starting from z = T (s)w with T (s) = C(sI − A)−1B + D ∈ H∞ and
assuming that: A is (Hurwitz) stable and x(0) = 0, the system gain (“Worst Amplification in any
direction”) is

‖T‖∞
4
= sup

0<‖w‖<∞

‖z‖2
‖w‖2

= sup
0<‖w‖<∞

‖Tw‖2
‖w‖2

. (48)

Remark 30 “Small” Energy Gain µ implies “Good” disturbance (w(t)) attenuation (rejection)
since

‖T‖∞ < µ ⇔

∞∫
0

zT zdt < µ2

∞∫
0

wT wdt, ∀w , 0 (49)

Theorem 31 Consider the CT LTI system in (46) and assume: A is (Hurwitz) stable and x(0) = 0.
The following three statements are equivalent:
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• System’s Energy Gain ‖T‖∞ < µ, i.e

sup
0<‖w‖<∞

‖Tw‖
‖w‖

< µ .

•

‖T‖∞ = sup
ω
σmax(T ( jω)) < µ .

i.e. T ∗( jω)T ( jω) < µ2I ∀ω ∈ R .

• There exists a solution P = PT > 0 of the LMI[
AT P + PA + CT C PB + CT D

BT P + DT C DT D − µ2I

]
< 0

m PA + AT P PB CT

BT P −µ2I DT

C D −I

 < 0

m
I 0
A B
0 I
C D


T 

0 P 0 0
P 0 0 0
0 0 −µ2I 0
0 0 0 I




I 0
A B
0 I
C D

 < 0 (50)

Remark 32 The last three LMIs (50) are actually the BRLs presented in (45) in a “robust stability”
setting !!! See section (4.2.1) for proof and section (4.2.2) for an alternative proof...

4.2.1 Proof of Sufficiency (feasible BRL⇒ H∞ norm ≤ µ)

Proof of Sufficiency “feasible BRL⇒ H∞ norm ≤ µ” is easy !!! Assuming that BRL (50) holds for
the CT LTI system ẋ(t) = Ax(t) + Bw(t), z(t) = Cx(t) + Dw(t) in (46) with A (Hurwitz) stable and
x(0) = 0, the time derivative of V(x) = xT Px, P = PT > 0 along the system trajectories is negative
and can be expressed as

V̇(x(t)) = xT [AT P + PA]x + xT PBw + wT BT Px

=

[
x
w

]T [
AT P + PA PB

BT P 0

] [
x
w

]
< 0 (51)

Noting that

zT z = (xT CT + wT DT )(Cx + Dw)
= xT CT Cx + xT CT Dw + wT DT Cx + wT DT Dw

the objective zT z ≤ µ2wT w (to be proved) can be written as
xT CT Cx + xT CT Dw + wT DT Cx + wT [DT D − µ2I]w ≤ 0 or[

x
w

]T [
CT C CT D
DT C DT D − µ2I

] [
x
w

]
≤ 0 (52)
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Now starting from the “2 × 2” version of BRL in (50), pre– multiplying by
[

x
w

]T

and post–

multiplying by
[

x
w

]
, and using (51), (52), we notice that feasible BRL⇒

[
x
w

]T {[
AT P + PA PB

BT P 0

]
+

[
CT C CT D
DT C DT D − µ2I

]} [
x
w

]
< 0︸                                                                                    ︷︷                                                                                    ︸

= V̇ + zT z − µ2wT w < 0

i.e. starting from BRL in (50) and using the assumed Lyapunov stability, it was shown that
V̇ + zT z − µ2wT w < 0. Integrating this last inequality from 0 to∞ while taking into account that

• V(x(∞)) = V(0) = 0 (due to system stability assumption)

• V(x(0)) = V(0) = 0 (by zero initial state assumption)

can write

∞∫
0

(V̇ + zT z − µ2wT w)dt < 0⇒

V(∞) − V(0) +

∞∫
0

zT zdt −

∞∫
0

wT w < 0⇒

‖z‖22 < µ
2‖w‖22 ⇒

‖z‖2
‖w‖2

< µ

i.e. H∞ norm (“Energy Gain”) less than µ !!! (see (48)and (49)).

4.2.2 Alternative Proof of Sufficiency (feasible BRL⇒ H∞ norm ≤ µ)

Here is an alternative proof of Sufficiency including the “mechanics” used for deriving the last LMI
in (50).

The time derivative of V(x) = xT Px, P = PT > 0 along the system trajectories is negative and
can be expressed as

V̇(x(t)) = ẋT Px + xT Pẋ = ẋT Px + xT P(Ax + Bw)

= [ xT ẋT ]
[

PAx + PBw
Px

]
= [ xT ẋT ]

[
PA PB
P 0

] [
x
w

]
=

[
x
ẋ

]T [
0 P
P 0

] [
I 0
A B

] [
x
w

]
< 0

But since ẋ = Ax + Bw = [A B]
[

x
w

]
can write

[
x
ẋ

]
=

[
x

Ax + Bw

]
=

[
I 0
A B

] [
x
w

]
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Using this result into the previous matrix (Lyapunov) inequality

V̇(x(t)) =

[
x
w

]T [
I 0
A B

]T [
0 P
P 0

] [
I 0
A B

] [
x
w

]
< 0 (53)

On the other hand, starting from the expression (52) for the objective zT z ≤ µ2wT w (to be proved)
can manipulate the matrix appearing there as follows:[

CT C CT D
DT C DT D − µ2I

]
=

[
0 CT

I DT

] [
0 −µ2I
C D

]
=

[
0 I
C D

]T [
−µ2I 0

0 I

] [
0 I
C D

]
hence (see (52))

zT z − µ2wT w =

[
x
w

]T [
0 I
C D

]T [
−µ2I 0

0 I

] [
0 I
C D

] [
x
w

]
(54)

Now starting from the “2 × 2” version of BRL in (50), pre– multiplying by
[

x
w

]T

and post–

multiplying by
[

x
w

]
, and using (53), (54), we notice that the expression

V̇ + zT z − µ2wT w < 0 arising from BRL, can be expressed as[
x
w

]T

[

I 0
A B

]T [
0 P
P 0

] [
I 0
A B

]
+

[
0 I
C D

]T [
−µ2I 0

0 I

] [
0 I
C D

]
[

x
w

]
< 0

Using “block–diagonal” manipulations, the matrix appearing in the previous matrix inequality
can be expressed as[

I 0
A B

]T [
0 P
P 0

] [
I 0
A B

]
+

[
0 I
C D

]T [
−µ2I 0

0 I

] [
0 I
C D

]
=


[ I 0

A B

]T [
0 I
C D

]T 



0 P I 0
P 0 A B
−µ2I 0 0 I

0 I C D


 =


I 0
A B
0 I
C D


T 

0 P 0 0
P 0 0 0
0 0 −µ2I 0
0 0 0 I




I 0
A B
0 I
C D

 < 0

which is the matrix appearing in the last formulation of BRL in (50).

L. Dritsas PhD 2020 29



L. Dritsa’s Notes on H∞, Robust Control, LMIs

5 H∞ Synthesis for Continuous Time Systems

5.1 H∞ State Feedback Synthesis for CT LTI without Uncertainties
Problem setup:

Open–Loop System (Plant):
ẋ(t) = Ax(t) + Bww(t) + Buu(t), x(0) = 0
z(t) = Czx(t) + Dzww(t) + Dzuu(t)

State Feedback Controller:
u(t) = Kx(t)

Closed–Loop System:
ẋ(t) = (A + BuK)x(t) + Bww(t)︸                        ︷︷                        ︸

4
= Aclx(t) + Bclw(t)

z(t) = (Cz + DzuK)x(t) + Dzww(t)︸                            ︷︷                            ︸
4
= Cclx(t) + Dclw(t)

with Acl
4
= A + BuK, Ccl

4
= Cz + DzuK, Bcl = Bw and Dcl = Dzw. The transfer function w → z

is clearly Tcl(s) = Ccl(sI − Acl)−1Bcl + Dcl, while the control design objectives are: closed-loop
stability and ‖Tcl‖∞ < γ for disturbance attenuation.

(Note the change of symbol from µ into the conventional γ for the attenuation...)

Using BRL (see the version presented in (41)), the above two requirements are equivalent (⇔)
to the existence of K ∈ <m×n and P ∈ S n such that

P > 0,

 PAcl + AT
clP PBcl CT

cl
BT

clP −γI DT
cl

Ccl Dcl −γI

 < 0 (55)

The “Congruence + Change of variables” trick again (set S = P−1, W = KS )

Matrix Inequality (55) is equivalent (⇔) to P−1 0 0
0 I 0
0 0 I


 PAcl + AT

clP PBcl CT
cl

BT
clP −γI DT

cl
Ccl Dcl −γI


 P−1 0 0

0 I 0
0 0 I

 < 0

⇔

 AclP−1 + P−1AT
cl Bcl P−1CT

cl
BT

cl −γI DT

CclP−1 Dcl −γI

 < 0 (56)

Now Bcl = Bw and Dcl = Dzw are constant matrices, whereas the products

AclP−1 = AP−1 + BuKP−1 and CclP−1 = CzP−1 + DzuKP−1
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can be transformed using change of variables S = P−1, W = KS and hence

AclP−1 = AP−1 + BuKP−1= AS + BuW

CclP−1 = CzP−1 + DzuKP−1= CzS + DzuW

Substituting into (56) we have the following result [1], [2]:

The CT–LTI system

ẋ(t) = Ax(t) + Bww(t) + Buu(t), x(0) = 0
z(t) = Czx(t) + Dzww(t) + Dzuu(t)

is stabilizable via state feedback u(t) = Kx(t) such that ‖Tcl(s)‖∞ < γ if and only if there exist
S ∈ S n (SPD matrix) and Z ∈ <m×n such that

S > 0,

 AS + BuW + S AT + WT BT
u Bw S CT

z + WT DT
zu

BT
w −γINu DT

zw
CzS + DzuW Dzw −γINu

 < 0 (57)

If LMI (57) has a feasible solution (in terms of S , W, γ), the SSF control gain K = WS −1

stabilizes the closed loop system robustly in the sense of “γ-attenuation”.

Remark 33 Optimal H∞ control set–up: minimize γ subject to the (convex) LMI constraint (57)...

An alternative (equivalent) synthesis procedure is available using Finsler’s Lemma [3]

The result in (57) can be used as a stepping stone for stability analysis and robust stabilization of
uncertain systems with norm bounded uncertainty.
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5.2 H∞ State Feedback Synthesis for CT LTI with Norm Bounded Uncertain-
ties

Problem setup:

Open–Loop System (Plant) with Norm Bounded Uncertainties:

ẋ(t) = (A + ∆A)x(t) + Bww(t) + (Bu + ∆Bu)u(t), x(0) = 0
z(t) = Czx(t) + Dzww(t) + Dzuu(t)

Norm Bounded Uncertainties:
[∆A ∆Bu] = DF [Ea Eb] , FT F ≤ I

State Feedback Controller:
u(t) = Kx(t)

Closed–Loop System:

ẋ(t) = (A + BuK + DF(Ea + EbK))x(t) + Bww(t) 4= Aclx(t) + Bclw(t)

z(t) = (Cz + DzuK)x(t) + Dzww(t) 4= Cclx(t) + Dclw(t)

Design Objective: Stabilization AND γ–attenuation (an H∞ objective)

Using BRL (see the version presented in (41)) with γ instead of µ, the above two requirements
are equivalent (⇔) to the existence of K ∈ <m×n and P ∈ S n such that

P > 0,

 PAcl + AT
clP PBcl CT

cl
BT

clP −γI DT
cl

Ccl Dcl −γI

 < 0 (58)

The “Congruence + Change of variables” trick again: S = P−1, W = KS !!!
Matrix Inequality (58) is equivalent (⇔) to P−1 0 0

0 I 0
0 0 I


 PAcl + AT

clP PBcl CT
cl

BT
clP −γI DT

cl
Ccl Dcl −γI


 P−1 0 0

0 I 0
0 0 I

 < 0

⇔

 AclP−1 + P−1AT
cl Bcl P−1CT

cl
BT

cl −γI DT

CclP−1 Dcl −γI

 < 0 (59)

Now Bcl = Bw and Dcl = Dzw are constant matrices, whereas the products

AclP−1 = AP−1 + BuKP−1 + DF(Ea + EbK)P−1 = AS + BuW + DFEaS + DFEbW

CclP−1 = CzP−1 + DzuKP−1 = CzS + DzuZ (60)

were transformed using change of variables S = P−1, W = KS . When these expressions are used
into (59) we have the following equivalent matrix inequality:

S > 0, AS + BuW + S AT + WT BT
u + DF(EaS + EbW) + (EaS + EbW)T FT DT Bw S CT

z + WT DT
zu

BT
w −γI DT

zw
CzS + DzuW Dzw −γI

 < 0

(61)
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By decomposing the last matrix inequality (61) as AS + BuW + S AT + WT BT
u Bw S CT

z + WT DT
zu

BT
w −γI DT

zw
CzS + DzuW Dzw −γI

 +

 D
0
0

 F
[

(EaS + EbW) 0 0
]

+

 (EaS + EbW)T

0
0

 FT
[

DT 0 0
]
< 0 (62)

Inequality (62) is clearly of the form G+M∆N+NT ∆T MT < 0, with ∆→ F, M →

 D
0
0

, N →[
(EaS + EbW) 0 0

]
and its “G”–part symmetric. Hence Lemma 5 can be used to transform

(62) into the following equivalent “G + εMMT + 1
ε
NT N ” matrix inequality (valid for all admissible

uncertainties (FT F ≤ I)) and ε > 0. Noting that

εMMT =

 +εDDT 0 0
0 0 0
0 0 0

, (62) is thus transformed into

 (AS + BuW) + (S AT + WT BT
u )+εDDT Bw S CT

z + WT DT
zu

BT
w −γI DT

zw
CzS + DzuW Dzw −γI

 +
1
ε

 (Ea + EbW)T

0
0

 [ (Ea + EbW) 0 0
]
< 0

(63)

which, by Schur Complement is equivalent (⇔) to
(AS + BuW) + (S AT + WT BT

u ) + εDDT Bw S CT
z + WT DT

zu (Ea + EbW)T

∗ −γI DT
zw 0

∗ ∗ −γI 0
∗ ∗ ∗ −εI

 (64)

If LMI (64) has a feasible solution (in terms of S , W, γ, ε), the SSF control gain K = WS −1

stabilizes the closed loop system robustly in the sense of “γ-attenuation” for all admissible norm
bounded uncertainties.
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5.3 H∞ Dynamic Output Feedback Synthesis for CT LTI without Uncertain-
ties - (INCOMPLETE)

Based on [9] and ...
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5.4 H∞ mixed sensitivity design(s)
The theoretical background for the “mixed sensitivity” approach to H∞ synthesis can be found in [5]
chapters 2,5 and 7... A brief recapitulation is depicted in Figures 3, 4, 5, 6 below...

5.4.1 Mixed sensitivity design

Figure 3: setup for setpoint tracking, disturbance rejection and noise suppression Fig3-14 from [5]

Figure 4: “mixsyn” setup for setpoint tracking (Fig3-17 from [5])

5.4.2 Selecting the filters Wp, Wt, Wu
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Figure 5: morari-2-22-new (see [5])
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Figure 6: (important explanation from [5] ch.2, p.64)

Figure 7: “morariFig2-27-2-26” selecting filter Wp (see [5] ch.2, p.61,62
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6 Bounded Real Lemma for Discrete Time systems (DT-BRL)

6.1 BRL as a Robust Quadratic Stability Criterion for DT-LTI Uncertain
Systems

Consider the “unforced” uncertain DT system

xk+1 = A(∆)xk = (A0 + ∆A)xk = (A0 + MA∆ANA)xk (65)

Definitions and control objectives similar to the CT case... see also (30) and Remark (21) about
temporary notation simplifications...

Remark 34 Note that (65) can be written as the feedback interconnection of the systems

xk+1 = A0xk + MAwk, zk = NAxk, wk = ∆zk (66)

Can generalize (65),(66) by including a feed–through term in the “output” equation i.e.

zk = NAxk + Dwk (67)

with the uncertain element wk = ∆zk.
Provided that (I − ∆AD)−1 exists, a well posedeness requirement, i.e.

(I − ∆AD) nonsingular ∀∆A ⇔ I > γ2
ADT D (68)

can write

wk = ∆zk ⇒ wk = (I − ∆AD)−1∆ANAxk

and the “LFT” representation of the uncertain DT system becomes

xk+1 = [A0 + MA(I − ∆AD)−1∆ANA]xk (69)

(Compare with the corresponding CT formulation in (39),(38)...)

Similarly with remark (21) we temporarily omit the “0” subscript from the nominal matrix A0
(writing simply “A”) and the “A” subscripts from MA,∆A,NA (writing simply M,∆,N).

Thus the problem is the investigation of robust quadratic stability conditions (equivalently sta-
bility + “disturbance attenuation”) for the norm bounded uncertain system

xk+1 = Axk + Bwk, zk = Cxk + Dwk, wk = ∆zk (70)

with A (Schur) stable and x(0) = 0, σmax(∆) ≤ γ(4= 1
µ
), z being the controlled output and w the

“disturbance”.

Theorem 35 Given system (70) and assuming: A is (Schur) stable and x(0) = 0, with T (z) =

C(zI − A)−1B + D ∈ H∞, the following three statements are equivalent:

• System’s Energy Gain ‖T‖∞ < µ, i.e

i.e. sup
0<‖wk‖<∞

‖Tw‖
‖wk‖

< µ . (71)
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• There exists a solution P = PT > 0 of the LMI

AT PA − P + CT C + (AT PB + CT D)
[
µ2I − (BT PB + DT D)

]−1
(BT PA + DT C) < 0

m[
AT PA − P + CT C AT PB + CT D

BT PA + DT C BT PB + DT D − µ2I

]
< 0

m AT PA − P AT PB + CT D CT

BT PA + DT C BT PB − µ2I DT

C D −I

 < 0 (72)

Proof of Sufficiency: i.e. that “feasible BRL⇒ H∞ norm ≤ µ” is easy !!! Assuming that BRL
(72) holds for the DT LTI system in (70), the time derivative of V(xk) = xT

k Pxk, P = PT > 0 along
the system trajectories is negative and can be expressed as

∆Vk = [Axk + Bwk]T P[Axk + Bwk] − xT
k Pxk

=

[
xk

wk

]T [
AT PA − P AT PB

BT PA BT PB

] [
xk

wk

]
< 0 (73)

The “disturbance attenuation” interpretation in (71) demands that zT
k zk ≤ µ

2wT
k wk. Following a

procedure analogous to the one in section (4.2.1), we first note that

zT
k zk = (xT

k CT + wT DT )(Cx + Dw)
= xT

k CT Cxk + xT
k CT Dwk + wT

k DT Cxk + wT
k DT Dwk

and hence the objective zT
k zk ≤ µ

2wT
k wk writes as

xT
k CT Cxk + xT

k CT Dwk + wT
k DT Cxk + wT

k (DT D − µ2I)wk ≤ 0 or[
xk

wk

]T [
CT C CT D
DT C DT D − µ2I

] [
xk

wk

]
(74)

Now starting from the “2 × 2” version of BRL in (72), pre– multiplying by
[

xk

wk

]T

and post–

multiplying by
[

xk

wk

]
, and using (73), (74), we notice that feasible BRL⇒[

xk

wk

]T {[
AT PA − P AT PB

BT PA BT PB

]
+

[
CT C CT D
DT C DT D − µ2I

]} [
xk

wk

]
< 0︸                                                                                           ︷︷                                                                                           ︸

= ∆Vk + zT
k zk − µ

2wT
k wk < 0

i.e. starting from BRL in (72) and using the assumed Lyapunov stability, it was shown that ∆Vk +

zT
k zk − µ

2wT
k wk < 0. Summing this last inequality from 0 to ∞ while taking into account that (i)

∞∑
0

(∆Vk) = V∞ − V0, (ii) V∞ = V(x(∞)) = V(0) = 0 (due to system stability assumption) and (iii)

V0 = V(x(0)) = 0 (by zero initial state assumption) can write
∞∑
0

(∆Vk) +

∞∑
0

(zT
k zk) − µ2

∞∑
0

(wT
k wk) < 0⇒

V(∞) − V(0) + ‖zk‖
2
2 − µ

2‖wk‖
2
2 ⇒

‖zk‖
2
2 < µ

2‖wk‖
2
2 ⇒ T (z) =

‖zk‖2

‖wk‖2
< µ
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i.e. H∞ norm (“Energy Gain”) less than µ !!!

6.2 Alternative formulations of the DT BRL
Starting from the “2 × 2” BRL formulation in (72) can write

[
AT PA − P + CT C AT PB + CT D

BT PA + DT C BT PB + DT D − µ2I

]
< 0

m[
−P 0
0 −µ2I

]
+

[
AT PA + CT C AT PB + CT D
BT PA + DT C BT PB + DT D

]
< 0

m[
−P 0
0 −µ2I

]
+

[
AT P CT

BT P DT

] [
P−1 0
0 I

] [
PA PB
C D

]
< 0

m
−P 0 AT P CT

0 −µ2I BT P DT

PA PB −P 0
C D 0 −I

 < 0 (75)

where in the last step the Schur Lemma (16) has been used. Performing now a congruent transfor-
mation on (76) via the permutation matrix

I 0 0 0
0 0 I 0
0 I 0 0
0 0 0 I


can finally express alternatively the DT–BRL in (72) as

−P AT P 0 CT

PA −P PB DT

0 BT P −µ2I 0
C 0 D −I

 < 0 (76)

Note that the lower left block reflects the well posedeness requirement in (68) i.e.
I > µ2DT D.

6.3 A note on the Controllability and Observability of Discrete–Time Systems
INCOMPLETE

See [10] pages 394 − 395
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7 The scaling trick for H∞ Analysis & Synthesis of Uncertain
Linear CT & DT Systems

The scaling trick was extensively studied in the 90’s for both CT and DT uncertain (norm bounded)
linear systems. The most generic presentation can be found in [11] although other useful approaches
can also be found in [12] and...

The trick consists into forming an “auxiliary” system without uncertainty (though depending
on the matrices appearing in the norm bounded uncertain parts of the system matrices) which is
equivalent “in the BRL sense” with the original uncertain system. This equivalence (concerning the
BRL of the two systems –original uncertain and “auxiliary” without uncertainty– also entails that an
H∞ controller designed for the “auxiliary” system without uncertainty, is an H∞ controller for the
original uncertain system. The presentation below is a simplified version of the results in [11].

7.1 H∞ control for uncertain Continuous–Time systems
Consider the uncertain linear system (“Original-Uncertain-Forced-System”)

ẋ(t) = A∆x(t) + Bww(t) + Buu(t), x(0) = 0
z(t) = Czx(t) + Dzww(t) + Dzuu(t) (77)

and its unforced version

ẋ(t) = A∆x(t) + Bww(t), x(0) = 0
z(t) = Czx(t) + Dzww(t) (78)

with

A∆ = A + ∆A, ∆A = MaFNa, FT (t)F(t) ≤ I, ∀t (79)

Consider now the following “auxiliary” (scaled) unforced system without uncertainty (for sim-
plicity assume Dzw = 0)

ẋa(t) = Axa(t) +
[
γ−1Bw εMa

]
wa(t), xa(0) = 0

za(t) =

[
Czx(t)

1
ε
Na

]
xa, ε > 0 (80)

The following Theorem establishes an equivalence between the scaling

Theorem 36 The uncertain system (78) is quadratically stable with H∞ disturbance attenuation
γ > 0 if and only if for some ε > 0 the scaled auxiliary system (80) is stable with unitary H∞
disturbance attenuation.

The idea is that starting from the BRL corresponding to a unitary H∞ disturbance attenuation for
the “auxiliary” (scaled) unforced system in (80) it is possible using equivalences to come up with
the BRL that corresponds to a H∞ disturbance attenuation γ > 0 for the uncertain system (78).

The proof needs the following version of Lemma 5.

Lemma 37 Given matrices G,M,N of compatible dimensions with G symmetric, the inequality

G + M∆N + NT ∆T MT < 0
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holds for all ∆ satisfying ∆T ∆ ≤ I if and only if (⇔) there exists a constant ε > 0 such that

G + ε2MMT +
1
ε2 NT N < 0 ⇔


G

(
1
ε
NT εM

)( 1
ε
N

εMT

)
−I2n

 < 0

⇔


G

(
εM 1

ε
NT

)(
εMT

1
ε
N

)
−I2n

 < 0

Proof of Theorem 36: The BRL corresponding to a unitary H∞ disturbance attenuation for the
“auxiliary” (scaled) unforced system in (80) is AT P + PA PM NT

MT P −γI DT

N D −γI

 < 0 (81)

7.2 H∞ control for uncertain Discrete–Time systems
The following Lemmas are cited in and concern the Robust H∞ control of linear discrete-time sys-
tems with norm-bounded time-varying uncertainty.

Consider the unforced uncertain linear system

x(k + 1) = Ax(k) + Bu(k) + H1w(k),
y(k) = Cx(k) + Du(k) + H2w(k)
z(k) = E1x(k) + E2u(k) (82)

with ET
2 E2 > 0

Lemma 38

2-BE CONTINUED...
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8 MATLAB code for various Robust and H∞ analysis & synthe-
sis approaches

Remark 39 MATLAB’s Robust Control Toolbox Manual uses the symbol γ as system’s H∞ norm
(see e.g. “hinfsyn” command)...

...whereas in this lecture, system’s H∞ norm is denoted by µ !!!

see for example page 8 − 7 (209/675) of “Robust Control Toolbox User’s Guide September
2007”...

...see also pages 5 − 28 (118/130) of “Getting Started with Robust Control Toolbox ver 3.3
R2007b” - chapter Interpretation of H-Infinity Norm...

8.1 MATLAB code-1: Robust CT SSF Synthesis for Uncertain CT Unstable
Sys

Consider the nominal open–loop unstable “benchmark” system G(s) = 1
s2 with state–space descrip-

tion (double integrator in controllable canonical form)

ẋ(t) =

[
0 1
0 0

]
x(t) +

[
0
1

]
u(t), y(t) =

[
1 0

]
x(t)

presented in Appendix 16. The uncertainties Da, Ea(α), Eb(β) used in the simulations are:

Da =
[

50 50
]
, Ea =

[
1 1

]
, Eb = 10

with Fα being a uniform random variable taking values in the interval (−1, 1... i.e. |Fα| < 1. The
initial conditions are Xinit =

(
10 −10

)
.

The proposed LMI (22) in section 3.4 yields a state feedback gain Ks f =
(
−0.1000 −0.1000

)
.

Figure 8 presents the Z.I.R state response and the control signal.
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Figure 8: Uncertain SYS0 (double integrator) State vector and control action
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8.2 MATLAB code-2: minimum H∞ system norm γ via BRL–LMI + “mincx”

%--------------------------------------------------------------

% Example of an Linear objective minimization problem (H-infinity norm)

% disp(’Leonidas DRITSAS 26Apr08’) G = rss(5,2,2); [A,B,C,D] = ssdata(G);

%--------------------------------------------------------------

setlmis([ ])

%----- Specfiy the matrix variables

P = lmivar(1,[size(A,1) 1]); gamma = lmivar(1,[1 1]);

%----- New LMI

HinfLMI = newlmi ;

%----- Only terms above the diagonal need to be specified

lmiterm([HinfLMI 1 1 P],1,A,’s’) % AP + P’A

lmiterm([HinfLMI 1 2 P],1,B) % PB

lmiterm([HinfLMI 1 3 0],C’) % C’

lmiterm([HinfLMI 2 2 gamma],-1,1) %-gamma.I

lmiterm([HinfLMI 2 3 0],D’) %D’

lmiterm([HinfLMI 3 3 gamma],-1,1) %-gamma.I

Ppos = newlmi % New LMI

lmiterm([Ppos 1 1 P],-1,1) % P > 0

LMIsys = getlmis; % Obtaining the system of LMIs

c = mat2dec(LMIsys,zeros(size(A,1),size(A,1)),1);

options = [1e-5,0,0,0,0]; % Relative accuracy of solution

%----- Solving the minimization problem --> use mincx

[copt,xopt] = mincx(LMIsys,c, options);

%----- Obtaining the optimal P and the optimal gamma

Popt = dec2mat(LMIsys,xopt,P); gammaopt =

dec2mat(LMIsys,xopt,gamma);

%----- display results

disp(’gammaopt is...’); disp(gammaopt) disp(’Popt is...’);

disp(Popt)

%----- Verify definiteness of matrix P --------------

disp(’eigenvalues of Popt are...’); disp(eig(Popt)) [R1,p1] =

chol(Popt); if p1==0

disp(’CHOLESKY VERIFIES THAT Popt is Pos-Def ’);

else

disp(’CHOLESKY SAYS THAT Popt is NOT Pos-Def --> INSTABILITY !!!’);

end

%----- END
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8.3 MATLAB code-2: Robust SSF Synthesis via LMI for uncertain CT sys-
tem

The following function implements the LMI synthesis procedure (22) presented in section 3.4 for
the robust state feedback stabilization of CT LTI systems with norm–bounded uncertainty (ẋ =

(A + ∆A)x(t) + (B + ∆B)u(t)). The LMI (22) whose feasibility yields the desired state feedback gain
is presented below as a reminder.[

(AS + BW) + (S AT + WT BT ) + εDDT (EaS + EbW)T

(EaS + EbW) −εIn

]
< 0

%----------------------------------------------------------

% function "fcn_solve_UNC_CT_LMI"

% DRITSAS 2009/2010

%----------------------------------------------------------

% disp(’function "fcn_solve_UNC_CT_LMI" Computes Robust Static

% State Feedback u=+Kx ’)

function [Sopt,Wopt,epsilonopt]=fcn_solve_UNC_CT_LMI(A,B,Ea,Eb,D)

[Nx Nu] = size(B);

%------------------- LMI SETUP ----------------------

setlmis([]);

%---- define S = inv(P) as SYMMETRIC

S=lmivar(1, [Nx , 1]); %% SYMMETRIC - BLOCK DIAGONAL - FULL BLOCK

%---- define W

W =lmivar(2, [Nu , Nx]); %W=lmivar(2, [1 , 2]); %W is 1xNx full rectangular

%---- define SCALAR epsilon

epsilon=lmivar(1, [1 1] );

%------------------------------------------------------

% POSITIVE DEFINITENESS OF S, epsilon

%------------------------------------------------------

Sposdef=newlmi; % newlmi Sposdef = POSITIVE DEFINITENESS OF S

lmiterm ( [Sposdef 1 1 S ],-1,1); % -S < 0

%disp(’ Omitting the constraint on EPSILON gives diff results !!!’); pause

EPSILONposdef=newlmi; % epsilon > 0

lmiterm([EPSILONposdef 1 1 epsilon],-1,1); % -epsilon < 0

%------------------------------------------------------

% newlmi LDRI

%------------------------------------------------------

LDRI=newlmi;
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%--- 1 1 -->

lmiterm([LDRI 1 1 S],A,1,’s’); %%’s’ --> AS + S’A’

lmiterm([LDRI 1 1 W],B,1,’s’); %%’s’ --> BW + W’B’

lmiterm([LDRI 1 1 epsilon],D,D’) % epsilon*DD’

%--- 1 2 --> S’*Ea’ + W’*Eb’

%---- BEWARE !! THE VARIABLEs "S" & "W" are TRANSPOSED !! -----

% TERMID(4) = 0 -> constant term

% TERMID(4) = X -> variable term A*X*B

% TERMID(4) = -X -> variable term A*X’*B % where X is the variable identifier in LMIVAR

disp(’Recall: TERMID(4) = -X -> variable term A*Xtranspose*B ’)

lmiterm([LDRI 1 2 -S], 1, Ea’); %% S’*Ea’

lmiterm([LDRI 1 2 -W], 1, Eb’ ); %% W’*Eb’

%--- 2 2 --> -epsilon*I

disp(’The IDENTITY/ZERO matrix is square n x n ’)

lmiterm([LDRI 2 2 epsilon],-1,1) % -epsilon*I

%--- getlmis

lmisys=getlmis;

%--------------------------------------------------------------------

% LMI SOLVE

%--------------------------------------------------------------------

disp(’LDRI: I increased OPTIONS(2)= max. num of iterations into

1500 ! ’)

% OPTIONS(2): max. number of iterations (Default=100)

% OPTIONS(4): when set to an integer value L > 1, forces termination when t has not

% decreased by more than 1 over the last L iterations (Default = 10).

options = [0,1500,-1,150,0] ;

% TARGET optional: target for TMIN. The code terminates as

% soon as t < TARGET DEFAULT = -1e5

target = -1e-10; %target=0

%--------------- FEASP ---------------------------------------

[tmin,xfeas]=feasp(lmisys,options,target);

disp(’tmin=’);disp(tmin)

fprintf(’\n\n’);

fprintf(’******************************************************’);

disp(’ *** LDRI: check tmin ***’);

disp(’*** verify pos-definiteness of the solution S ***’);

fprintf(’******************************************************’);

if tmin < 0;

disp(’LDRI_11May09: feasp LMI Feasible SINCE tmin < 0’);
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else

error(’LDRI_11May09: feasp LMI is not Feasible SINCE tmin > 0 ’);

end

%--------------------------------------------------------------------------

% optimal S = inv(P)

%--------------------------------------------------------------------------

Sopt = dec2mat(lmisys,xfeas,S)

disp(’eigenvalues of optimal S are...’); disp(eig(Sopt))

[R1,p1] = chol(Sopt); if p1==0

disp(’--- CHOLESKY VERIFIES THAT optimal S is Pos-Def --- ’);

else

error(’-- CHOLESKY VERIFIES THAT optimal S is NOT Pos-Def’);

end

%--------------------------------------------------------------------------

% optimal X1 --> X=X1’ & K=X*inv(Sopt)

%--------------------------------------------------------------------------

Wopt = dec2mat(lmisys,xfeas,W) %% Xopt=X1opt’

%--------------------------------------------------------------------------

% optimal epsilon

%--------------------------------------------------------------------------

epsilonopt=dec2mat(lmisys,xfeas,epsilon)

%----- end -----------------------------------------------
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8.4 MATLAB code-3: Robust SSF Synthesis via LMI for uncertain DT sys-
tem (INCOMPLETE)

The following function implements the LMI synthesis procedure presented in section 10.4 for the
robust state feedback stabilization of DT LTI systems with norm–bounded uncertainty

xk+1 = (A + ∆A)xk + (B + ∆B)uk

[∆A ∆B] = DF [Ea Eb] , FT F ≤ I

The LMI (170) whose feasibility (in terms of a positive scalar ε > 0, a matrix W ∈ <m×n

and symmetric positive definite matrix S = P−1 ∈ <n×n) yields the desired state feedback gain
(uk = WS −1xk = Kxk) is presented below as a reminder. −S + εDDT AS + BW 0

(AS + BW)T −S (EaS + EbW)T

0 (EaS + EbW) −εI

 < 0

function [Sopt,Wopt,epsilonopt] =fcn_solve_UNC_DT_LMI(A,B,Ea,Eb,D)

%----- DRITSAS 2009/2010

disp(’function "fcn_solve_UNC_DT_LMI" Computes Robust Static

State Feedback u=+Kx ’)

[Nx Nu] = size(B);

%------------------- LMI SETUP -------------------------------

setlmis([]);

%---- define S = inv(P) as SYMMETRIC

S=lmivar(1, [Nx , 1]); %% SYMMETRIC - BLOCK DIAGONAL - FULL BLOCK

%---- define W

W =lmivar(2, [Nu , Nx]); %W=lmivar(2, [1 , 2]); %W is 1xNx full rectangular

%---- define SCALAR epsilon

epsilon=lmivar(1, [1 1] );

%------------- newlmi Sposdef = POSITIVE DEFINITENESS OF S

Sposdef=newlmi;

lmiterm ( [Sposdef 1 1 S ],-1,1) % -S < 0

%------------------------- POSITIVE SCALAR epsilon > 0

%disp(’ Omitting the constraint on EPSILON gives diff results !!! ’)

EPSILONposdef=newlmi; %%

lmiterm([EPSILONposdef 1 1 epsilon],-1,1);% -epsilon < 0

%------------------------------------------------------

% newlmi LDRI = THEOREM

%------------------------------------------------------

LDRI=newlmi;

%-------- 1 1

lmiterm([LDRI 1 1 S],-1,1); % -S

lmiterm([LDRI 1 1 epsilon],D,D’) % epsilon*DD’
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%-------- 1 2 --> A*S + B*W

lmiterm([LDRI 1 2 S], A, 1); %% A*S

lmiterm([LDRI 1 2 W], B, 1 ); %% B*W

disp(’The three ZERO matrices in the first row are square n x n ’)

%-------- 1 3 -->

lmiterm([LDRI 1 3 0],zeros(Nx));

%-------- 2 2 --> -S

lmiterm([LDRI 2 2 S], -1,1);

%%% 2 3 --> BEWARE !! THE VARIABLEs "S" & "W" are TRANSPOSED

% TERMID(4) = 0 -> constant term

% TERMID(4) = X -> variable term A*X*B

% TERMID(4) = -X -> variable term A*X’*B

% X is the variable identifier returned by LMIVAR

disp(’ TERMID(4) = -X -> variable term A*Xtranspose*B ’)

lmiterm([LDRI 2 3 -S], 1, Ea’); %% S’*Ea’

lmiterm([LDRI 2 3 -W], 1, Eb’); %% W’*Eb’

%-------- 3 3 --> -epsilon*I

lmiterm([LDRI 3 3 epsilon],-1,1) % -epsilon*I

%--------------------- getlmis

lmisys=getlmis;

%--------------------------------------------------------------------------

% LMI SOLVE

%--------------------------------------------------------------------------

disp(’LDRI: I increased OPTIONS(2)= max. number of iterations

into 1500 !!! ’)

% OPTIONS(2): max. number of iterations (Default=100)

% OPTIONS(4): when set to an integer value L > 1, forces termination when t

% has not decreased by more than 1 over the last L iterations (Default = 10).

options = [0,1500,-1,150,0] ;

% TARGET optional: target for TMIN. The code terminates as

% soon as t < TARGET DEFAULT = -1e5

target = -1e-10; %target=0

%--------------- FEASP ----------------------------------------

[tmin,xfeas]=feasp(lmisys,options,target); disp(’tmin=’);

disp(tmin)

if tmin < 0;

fprintf(’\n’); fprintf(’**********************************’); fprintf(’\n’);

disp(’LDRI_11May09: feasp LMI Feasible SINCE tmin < 0’);

fprintf(’**********************************’); fprintf(’\n’);

else

fprintf(’\n’); fprintf(’*************** LMI not Feasible *******************’);

fprintf(’\n’);

error(’LDRI_11May09: feasp LMI is not Feasible SINCE tmin > 0 ’);
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fprintf(’**********************************’); fprintf(’\n’);

end

fprintf(’\n\n’);

fprintf(’***************************************************************’);

disp(’ *** get the solutions verify pos-definiteness of S ***’);

fprintf(’***************************************************************’);

%--------------------------------------------------------------------------

% optimal S = inv(P)

%--------------------------------------------------------------------------

Sopt = dec2mat(lmisys,xfeas,S)

%---------------

disp(’eigenvalues of optimal S are...’); disp(eig(Sopt))

%---------------

[R1,p1] = chol(Sopt); if p1==0

disp(’--- CHOLESKY VERIFIES THAT optimal S is Pos-Def --- ’);

else

error(’-- CHOLESKY VERIFIES THAT optimal S is NOT Pos-Def’);

end

%--------------------------------------------------------------------------

% optimal W & K=W*inv(Sopt)

%--------------------------------------------------------------------------

Wopt = dec2mat(lmisys,xfeas,W)

%--------------------------------------------------------------------------

% optimal epsilon

%--------------------------------------------------------------------------

epsilonopt=dec2mat(lmisys,xfeas,epsilon)

8.4.1 Numerical Result: Robust DT SSF Synthesis for Uncertain CT Unstable Sys

Consider the nominal open–loop unstable “benchmark” system G(s) = 0.1
s2+0.1s with state–space de-

scription (controllable canonical form)

ẋ(t) =

[
0 1
0 −0.1

]
x(t) +

[
0
1

]
u(t), y(t) =

[
0.1 0

]
x(t)

presented in Appendix 16. The nominal system is discretized with h = 0.1s, yielding

Ad =

[
1 0.0995
0 0.9900

]
, Bd =

[
0.0050
0.0995

]
The norm bounded discrete–time uncertainties D, Ea(α), Eb(β) used in the simulations obey the

following structure:

D = sys f actor ∗ [−1; 1]; Ea = sys f actor ∗ [−1 1]; Eb = sys f actor ∗ 1;

hence

∆A = (sys f actor)2
[

1 −1
−1 1

]
f , ∆B = (sys f actor)

[
−1
1

]
f , | f | < 1
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The LMI (170) was found infeasible for sys f actor > 0.35 whereas for sys f actor = 0.35, the
robustly stabilizing state feedback gain was computed as

K =
[
−14.1930 −9.6521

]
yielding a zero–input-response shown below in Figure 9 when the initial conditions are Xinit =[

10 −10
]
.
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Figure 9: State vector of the Uncertain SYS7 (sys f actor = 0.35)
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8.5 MATLAB code-4: H∞ SSF synthesis (INCOMPLETE)
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8.6 MATLAB code-5: Using “hinfsyn/mixsyn” commands for H∞ synthesis
(INCOMPLETE)

clear all; clc ; close all fig=5;

disp(’===================================================================’)

disp(’LDRI 09Sep10 + 27Dec07 --> Using mixsyn...’) ;

%---

disp(’This is a version including Wt (along with Wp,Wu) ’)

disp(’===================================================================’)

disp(’======= SIMULINK QUANTITIES ============’)

%---

Unif_Rand_Number_Amplit=1;

y_ref = 1%0

%---- step DISTURBANCE

step_final_value_disturb = +0.5*y_ref;

step_time_disturb = 20 ;%% Starting Time for DISTURBANCE "step"

%---- pulse DISTURBANCE

pulse_disturb_amplitude = +0.5*y_ref; %+1;

pulse_disturb_period = 0.50;

disp(’===================================================================’)

s=tf(’s’);

disp(’===================================================================’)

disp(’ Default PLANT Gtf = (200) / (10s + 1 ) (0.05s + 1)ˆ2 &

Zero Init_Conditions ’)

disp(’===================================================================’)

Gtf = (200)/( (10*s+1)*(0.05*s+1)ˆ2 )

pole(Gtf) ; tzero(Gtf)

Gss = ss(Gtf)

[G_Nx G_Nu] = size(Gss.b)

xinit_Plant = zeros(G_Nx,1)

%WEIGHT Wp = (s/M + wb)/ (s +wb*A) , Wu = 1

disp(’===================================================================’)

disp(’ Sensitivity weight Wp== (s/M+wb)/(s+wb*A) and 1/Wp are

BOTH Stable ’)

%----

disp(’NOTE: a value of A = 0 in Wp would ask for integral action

in the controller’)

wb=10; % Closed loop bandwidth, wb

M=1.5; % desired bound on hinfnorm(S) & hinfnorm(T)

A=10ˆ-4; % desired disturbance attenuation inside bandwidth

disp(’*** Wp = Sensitivity weight (zpk FORMAT)’)

Wp = (s/M+wb)/(s+wb*A); Wp_zpk=zpk(Wp) % Sensitivity weight
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%-----------------

disp(’*** invWp = inverse of Sensitivity weight Wp (zpk FORMAT)’)

invWp = 1/Wp ; invWp_zpk=zpk(invWp)

if isstable(Wp)==1

disp(’*** Wp stable’); %disp(’ *** pole(Wptf) *** ’); pole(Wp)

else

disp(’ *** pole(Wptf) *** ’); pole(Wp)

error(’*** Wp UNSTABLE’)

end

%------------------

if isstable(invWp)==1

disp(’*** invWp stable’);

else

disp(’ *** pole(invWp) *** ’); pole(invWp)

error(’*** invWp UNSTABLE’)

end

disp(’===================================================================’)

disp(’ Wt=1/Wi = weight on T (noise attenuation at high-freq) ’)

Wt=(s+wb/M)/(A*s+wb); Wt_zpk=zpk(Wt)% Complementary sensitivity weight

disp(’ invWt = inverse of Complementary Sensitivity weight Wt(zpk

FORMAT)’)

%----

invWt=1/Wt; invWt_zpk=zpk(invWt)

%----

disp(’ pole(Wt) ’);pole(Wt)

%----

disp(’ *** pole(invWt) *** ’);pole(invWt)

figure(fig); fig=fig+1;

bodemag(invWp,’b’, invWt,’g’)

title(’Bode-mag of 1/Wp, 1/Wt’) hh=legend(’$|1/W_{p}(j\omega)|$’,

’$|1/W_{t}(j\omega)|$’,12);

set(hh,’Interpreter’,’latex’,’FontName’, ’Times New

Roman’,’fontsize’,12)

disp(’==================================================’)

%---

disp(’ Control ("Input Sensitivity) weight Wu=1 ’)

Wu=1; % Control weight

disp(’==================================================’)

disp(’ mixsyn syntax ’)

disp(’ [K,CL,GAM,INFO]=

mixsyn(G,W1,W2,W3,KEY1,VALUE1,KEY2,VALUE2,...) ’)

disp(’is equivalent to
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[K,CL,GAM,INFO]=hinfsyn((G,W1,W2,W3),KEY1,VALUE1,KEY2,VALUE2,...)’)

disp(’NOTE: This version includes Wt (along with Wp,Wu) ’)

disp(’==================================================’)

% In our case CL = [W1*S; W2*K*S; W3*T] = N = [Wp1*S; Wu2*K*S; W3=empty]

[Kmixsyn_ss, N, GAMMA_mixsyn, INFO] = mixsyn(Gss,Wp,Wu,Wt);

disp(’* VERIFY that "mixsyn = hinfsyn(augw(Gss,Wp,Wu,Wt))" *’);

[Khinfsyn_ss, ghinf, gopt_hinfsyn] = hinfsyn(augw(Gss,Wp,Wu,Wt))

disp(’==================================================’)

disp(’LDRI: THE Hinf-mixsyn CONTROLLER is returned by mixsyn in

"ss" format’)

%----

disp(’ Set Zero Initial-Conditions Hinf-mixsyn CONTROLLER ’)

disp(’==================================================’)

Kmixsyn_ss % THE Hinf-mixsyn CONTROLLER

[K_Nx K_Nu] = size(Kmixsyn_ss.b) xinit_Kss = zeros(K_Nx,1)

disp(’== Kmixsyn_tf = Hinf_mixsyn CONTROLLER in TF FORMAT =====’)

Kmixsyn_tf = tf(Kmixsyn_ss) % K = tf(Kss);

disp(’== Kmixsyn_zpk = Hinf_mixsyn CONTROLLER in zpk FORMAT=====’)

Kmixsyn_zpk = zpk(Kmixsyn_tf)

%----

disp(’ *** poles of Hinf_mixsyn CONTROLLER *** ’)

pole(Kmixsyn_zpk)

fprintf(’\n\n’);

disp(’==================================================’)

disp(’LDRI: CALCULATE TRANSFER-FUNCTIONS L, S, T and their Hinf

NORMS ’);

disp(’==================================================’)

L = Gtf*Kmixsyn_tf ; % L2= G*Kmixsyn_ss ; % also valid !!!!

%-- Sensitivity

S= inv(1+L) ; %S=minv(madd(1,L));

%-- Complementary sensitivity

T=1-S ; Tzpk=zpk(T)

%---

disp(’ poles of T(s) with Hinf_mixsyn CONTROLLER ’);

pole(Tzpk)

%-- KS

R=Kmixsyn_ss*S ;

disp(’==== Compare GAMMA_mixsyn <==> N_peak= norm(N,inf) ===== ’)

S_peak = norm(S,inf) %

T_peak = norm(T,inf) %

N_peak = norm(N,inf) %
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fprintf(’\n\n’);

disp(’==================================================’)

disp(’LDRI: SIGMA PLOTS... ’);

disp(’==================================================’)

figure(fig); fig=fig+1; sigma(S,’b’, T,’g’, GAMMA_mixsyn/Wp,’r-.’,

GAMMA_mixsyn*Gtf/ss(Wu),’k-.’)

hh=legend(’$\sigma(S)$’,’$\sigma(T)$’ ,’$\gamma/W_{p}$’,

’$\gamma*G/W_{u}$’ , 12)

%---

set(hh,’Interpreter’,’latex’,’FontName’, ’Times New

Roman’,’fontsize’,12)

%----------------------------------------------

% 12 = BODE of S, N_peak/Wp

%----------------------------------------------

figure(fig); fig=fig+1;

sigma(S, N_peak/Wp,’r-.’); %sigma(S,1/Wp,’-.’);

title(’|S| and \gamma/|W_{p}| using "sigma" ’);

hh=legend(’$|S(j\omega)|$’, ’$\gamma/|W_{p}(j\omega)|$’,12)

set(hh,’Interpreter’,’latex’,’FontName’, ’Times New

Roman’,’fontsize’,12)

%----------------------------------------------

% 13 = BODE of T, N_peak/Wt

%----------------------------------------------

figure(fig); fig=fig+1;

sigma(T, N_peak/Wt,’r-.’); %sigma(S,1/Wp,’-.’);

title(’|T| and \gamma/|W_{t}| using "sigma" ’);

hh=legend(’$|T(j\omega)|$’, ’$\gamma/|W_{t}(j\omega)|$’,12)

set(hh,’Interpreter’,’latex’,’FontName’, ’Times New

Roman’,’fontsize’,12)

%----------------------------------------------

% 14 = step response of T

%----------------------------------------------

figure(fig); fig=fig+1; step(T,3); xlabel(’Time’);ylabel(’y’);

title(’Tracking a STEP: the step response of T ’);
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Figure 10: Mixed sensitivity result - Wp,Wu,Wt design - multistep command
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Figure 11: Mixed sensitivity result - Wp,Wu design - multistep command
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9 Guaranteed Cost Control (GCC) of Uncertain Discrete Time
Systems with State and Input Delays

Presentation is primarily based on [6] i.e. the paper by L. Yu and F. Gao “Optimal guaranteed cost
control of discrete-time, uncertain systems with both state and input delays”, Journal of the Franklin
Institute, vol. 338, 2001, p.101–110.

The Generic Case and Three Special (Sub)Cases of the GCC Approach

• The most Generic Case1: GCC Synthesis for uncertain DT system with state and input delays
i.e. xk+1 = (A + ∆A)xk + (A1 + ∆A1)xk−d + (B + ∆B)uk + (B1 + ∆B1)uk−h

• Case2: GCC Synthesis for uncertain DT systems with only Input Delay i.e. xk+1 = (A +

∆A)xk + (B + ∆B)uk + (B1 + ∆B1)uk−h

• Case3: GCC Synthesis for uncertain DT systems with only State Delay i.e. xk+1 = (A +

∆A)xk + (B + ∆B)uk + (A1 + ∆A1)xk−d

• Case4: GCC Synthesis for uncertain DT systems without Input or State Delay i.e. xk+1 =

(A + ∆A)xk + (B + ∆B)uk

9.1 The generic GCC Problem Setup & closed–loop Stability Analysis
Open–loop DT system with state and input delays and uncertain dynamics

xk+1 = (A + ∆A)xk + (A1 + ∆A1)xk−d + (B + ∆B)uk + (B1 + ∆B1)uk−h (83)

with x ∈ <n and u ∈ <m

• d and h are unknown constant integers representing the number of delay units in the state and
input, respectively, bounded as 0 ≤ d ≤ d∗, 0 ≤ h ≤ h∗ with bounds d∗, h∗ being known

• A, A1, B, B1 are known real constant matrices of appropriate dimensions

• uncertain matrices ∆A, ∆B, ∆A1, ∆B1 represent time-varying parameter uncertainties in the
system model, satisfying

[∆A ∆B ∆A1 ∆B1] = DF [Ea Eb Ed Eh] (84)

• D, Ea Eb Ed Eh are known real constant matrices of appropriate dimensions describing the
structure of uncertainties

• the unknown (time-varying) matrix F satisfies FT F ≤ I, ∀k

Associated with the uncertain open–loop system (83) is the cost function

J =

∞∑
k=0

[
xT

k Qxk + uT
k Ruk

]
(85)

with Q, R > 0 being symmetric and positive definite matrices of appropriate dimensions. Assum-
ing that the system state is available for feedback, the objective is the design of a memoryless state
feedback control law u∗k = Kxk, such that for any admissible uncertainty F the resulting closed–loop
system is not only asymptotically stable but also guarantees the satisfaction of the bound J ≤ J∗
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with the constant positive scalar J∗ being independent of the uncertainties. Then J∗ is said to be
a guaranteed cost and u∗k is said to be a guaranteed cost control law. The rationale behind this last
objective is to incorporate performance objectives into the (stabilization) design procedure.

Closing the loop in (83) with uk = Kxk, the closed–loop dynamics are

xk+1 = [A + BK + ∆A + ∆BK] xk + [B1 + ∆B1] Kxk−h +

[A1 + ∆A1] xk−d

= [A + BK + DF(Ea + EbK)] xk + [B1 + DFEh] Kxk−h +

[A1 + DFEd] xk−d
4
= AC(k)xk + BH(k)Kxk−h + AD(k)xk−d (86)

with the uncertain matrices AC , BH , AD, defined as

AC
4
= A + BK + DF(Ea + EbK), BH

4
= B1 + DFEh, AD

4
= A1 + DFEd (87)

The cost function associated with the closed–loop system (86) is

Jcl =

∞∑
k=0

xT
k

[
Q + KT RK

]
xk (88)

9.2 GCC Analysis: Sufficient condition for the existence of SSF solution to
GCC

The symbol “∗” induces symmetry as usual in the LMI literature.

Theorem 40 The control law u∗k = Kxk is a guaranteed cost controller if there exist symmetric
positive definite matrices P, Pd ∈ <

n×n,T ∈ <m×m such that for any admissible uncertain matrix F
the following matrix inequality holds: Π AT

C PAD AT
C PBH

∗ AT
DPAD − Pd AT

DPBH

∗ ∗ BT
H PBH − T

 < 0 (89)

where

Π
4
= AT

C PAC −P + Pd + KT T K + Q + KT RK︸                                    ︷︷                                    ︸
4
= AT

C PAC + Λ (90)

with the obvious definition for Λ and the uncertain closed–loop system matrices AC , BH , AD already
defined in (87). Moreover the closed-loop cost function satisfies

Jcl ≤ J∗ 4
= xT

0 Px0 +

d∑
i=1

xT
−iPd x−i +

h∑
i=1

xT
−iK

T T Kx−i

≤ λmax(UT PU) + d∗λmax(UT PdU) + h∗λmax(UT KT T KU) (91)

Proof: Defining
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• the “positive with respect to xk” function

V tot
k = V1

k + V2
k + V3

k = xT
k Pxk +

d∑
i=1

xT
k−iPd xk−i +

h∑
j=1

xT
k− jK

T T Kxk− j (92)

with P, Pd, T > 0 being symmetric positive definite matrices of appropriate dimensions,

• the augmented state vector ξk
4
=

 xk

xk−d

Kxk−h

 ∈ <(2n+m) which allows to write the closed-loop

dynamics (86) as
xk+1 = AC xk + ADxk−d + BH Kxk−h = [AC AD BH] ξk,

the forward difference ∆Vk = V tot
k+1 −V tot

k along the trajectories of the closed-loop system (86) can be
expressed in terms of ξk as follows:

∆V3
k –term:

∆V3
k =

 h∑
j=1

xT
k+1− jK

T T Kxk+1− j

 −
 h∑

j=1

xT
k− jK

T T Kxk− j


= xT

k KT T Kxk − xT
k−hKT T Kxk−h

= ξT
k

 KT T K 0 0
0 0 0
0 0 −T

 ξk (93)

∆V2
k –term:

∆V2
k =

 d∑
i=1

xT
k+1−iPd xk+1−i

 −
 d∑

i=1

xT
k−iPd xk−i

 = xT
k Pd xk − xT

k−dPd xk−d

= ξT
k

 Pd 0 0
0 −Pd 0
0 0 0

 ξk (94)

∆V1
k –term:

V1
k = xT

k Pxk can be written as ξT
k

 P 0 0
0 0 0
0 0 0

 ξk with the matrix dimension being (2n + m) ×

(2n + m). Using xk+1 = [AC AD BH] ξk the V1
k+1 term writes as

V1
k+1 = xT

k+1Pxk+1 = ξT
k [AC AD BH]T P [AC AD BH] ξk

= ξT
k

 AT
C PAC AT

C PAD AT
C PBH

∗ AT
DPAD AT

DPBH

∗ ∗ BT
H PBH

 ξk

and hence

∆V1
k = V1

k+1 − V1
k = ξT

k

 AT
C PAC − P AT

C PAD AT
C PBH

∗ AT
DPAD AT

DPBH

∗ ∗ BT
H PBH

 ξk (95)
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Combining (93),(94),(95)

∆V tot
k = ∆V1

k + ∆V2
k + ∆V3

k

= ξT
k

 AT
C PAC − P + Pd + KT T K AT

C PAD AT
C PBH

∗ AT
DPAD − Pd AT

DPBH

∗ ∗ BT
H PBH − T

 ξk

Recalling the definition Π
4
= AT

C PAC − P + Pd + KT T K + Q + KT RK from (187), the (1, 1)-element
writes as Π − (Q + KT RK) and the previous expression for ∆V tot

k becomes

∆V tot
k = ξT

k

 Π − (Q + KT RK) AT
C PAD AT

C PBH

∗ AT
DPAD − Pd AT

DPBH

∗ ∗ BT
H PBH − T

 ξk

= ξT
k


 Π AT

C PAD AT
C PBH

∗ AT
DPAD − Pd AT

DPBH

∗ ∗ BT
H PBH − T

 −
 (Q + KT RK) 0 0

∗ 0 0
∗ ∗ 0


 ξk

From the assumption about the negative definiteness of the matrix appearing in Theorem 68, it
is clear that the “wish” for ∆V tot

k < 0 is indeed satisfied since (in that case)

∆V tot
k < −ξT

k

 Q + KT RK 0 0
∗ 0 0
∗ ∗ 0

 ξk

= −xT
k

[
Q + KT RK

]
xk

≤ −λmin(Q + KT RK)‖xk‖
2 < 0. (96)

Noting that Q + KT RK > 0, the fact that ∆V tot
k < 0 implies asymptotic (quadratic) stability (must

use “partial” stability arguments). Furthermore

xT
k

[
Q + KT RK

]
xk ≤ −∆V tot

k = V tot
k − V tot

k+1

Summing both sides of the last inequality from k = 0 to k = N yields
N∑

k=0
xT

k

[
Q + KT RK

]
xk ≤

V tot
0 − V tot

N .
Letting N → ∞, while using the already proven (asymptotic) stability of the closed-loop system

(i.e. that as N → ∞ both xN → 0 and V tot
N (xN)→ 0),

Jcl =

∞∑
k=0

xT
k

[
Q + KT RK

]
xk ≤ V tot

0

= xT
0 Px0 +

d∑
i=1

xT
−iPd x−i +

h∑
i=1

xT
−iK

T T Kx−i
4
= J∗ (97)

The guaranteed cost J∗ in (97) depends only on the initial conditions, and not on the uncertainties.

To remove this dependence on the initial condition, there are two approaches: the stochastic
approach and the deterministic method (adopted here) where it is assumed that the initial state of the
system (83) is arbitrary but belongs to the set x−i ∈ <

n : x−i = Uui, uT
i ui ≤ 1, i = 0, 1, 2, . . . , d̂
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where U is a given matrix and d̂ = max{h∗, d∗}. The cost bound then obeys

J∗ 4
= xT

0 Px0 +

d∑
i=1

xT
−iPd x−i +

h∑
i=1

xT
−iK

T T Kx−i

≤ λmax(UT PU) + d∗λmax(UT PdU) + h∗λmax(UT KT T KU) (98)

This completes the proof of the theorem. �
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9.3 GCC Synthesis for systems with state and input delay
Theorem 41 For the uncertain system (83) and the cost function (85) there exist symmetric positive-
definite matrices P,T such that matrix inequality (89) holds for all admissible uncertainties if and
only if there exist a positive scalar ε > 0, a matrix W ∈ <m×n and symmetric positive definite
matrices S = P−1 ∈ <n×n,M = P−1

d ∈ <n×n, N = T−1 ∈ <m×m such that the following LMI is
satisfied.



−S + εDDT AS + BW A1M B1N 0 0 0 0 0
∗ −S 0 0 (EaS + EbW)T S T WT S WT

∗ ∗ −M 0 MET
d 0 0 0 0

∗ ∗ ∗ −N NET
h 0 0 0 0

∗ ∗ ∗ ∗ −εI 0 0 0 0
∗ ∗ ∗ ∗ ∗ −M 0 0 0
∗ ∗ ∗ ∗ ∗ 0 −N 0 0
∗ ∗ ∗ ∗ ∗ 0 0 −Q−1 0
∗ ∗ ∗ ∗ ∗ 0 0 0 −R−1


< 0.

(99)

Furthermore, if matrix inequality (189) has a feasible solution in terms of the variables {ε, W, S}
then the state feedback control law uk = WS −1xk is a guaranteed cost control law and the corre-
sponding closed-loop cost function satisfies

J ≤ (1 + h∗)λmax(UT S −1U) + d∗λmax(UT M−1U) (100)

Proof: Recalling from (187) the definitions
Π
4
= AT

C PAC−P + Pd + KT T K + Q + KT RK 4
= AT

C PAC + Λ, with
Λ
4
= −P + Pd + KT T K + Q + KT RK = ΛT ,

the matrix inequality (89) in Theorem 68 i.e. Π AT
C PAD AT

C PBH

∗ AT
DPAD − Pd AT

DPBH

∗ ∗ BT
H PBH − T

 < 0

can be decomposed as AT
C PAC AT

C PAD AT
C PBH

∗ AT
DPAD AT

DPBH

∗ ∗ BT
H PBH

 +

 Λ 0 0
0 −Pd 0
0 0 −T

 =

 AT
C

AT
D

BT
H

 P [AC AD BH] +

 Λ 0 0
0 −Pd 0
0 0 −T

 < 0 (101)

which by Schur complement (see Lemma 17) is equivalent to
−P−1 AC AD BH

AT
C Λ 0 0

AT
D 0 −Pd 0

BT
H 0 0 −T

 < 0 (102)

Substituting in (102) the defining expressions of the uncertain matrices from (87), i.e.
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• AC = A + BK + DF(Ea + EbK)

• BH = B1 + DFEh

• AD = A1 + DFEd

and separating the nominal from the uncertain parts (i.e. those including matrix F), (102) can be
equivalently written as 

−P−1 A + BK A1 B1
(A + BK)T Λ 0 0

AT
1 0 −Pd 0

BT
1 0 0 −T

 +


D
0
0
0

 F
[

0 (Ea + EbK) Ed Eh

]
+

[
0 (Ea + EbK) Ed Eh

]T
FT


D
0
0
0


T

< 0 (103)

Inequality (193) is clearly of the form G + M∆N + NT ∆T MT < 0, with ∆ → F, M →


D
0
0
0


hence εMMT =


+εDDT 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

, N →
[

0 (Ea + EbK) Ed Eh

]
and its “G”–part sym-

metric.

Hence Lemma 5 can be used to transform (193) into the following equivalent “G + εMMT +
1
ε
NT RN” inequality (valid ∀ admissible F and ε > 0)

(193) ⇔ ∃ ε > 0,


−P−1+εDDT A + BK A1 B1
(A + BK)T Λ 0 0

AT
1 0 −Pd 0

BT
1 0 0 −T


+

1
ε


0

(Ea + EbK)T

ET
d

ET
h


[

0 (Ea + EbK) Ed Eh

]
< 0,

(104)

which, by Schur Complement is equivalent (⇔) to


−P−1 + εDDT A + BK A1 B1 0

(A + BK)T Λ 0 0 (Ea + EbK)T

AT
1 0 −Pd 0 ET

d
BT

1 0 0 −T ET
h

0 (Ea + EbK) Ed Eh −εI

 < 0 (105)
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Remark 42 (the important trick here is to leave the term

1
ε


0

(Ea + EbK)T

ET
d

ET
h


[

0 (Ea + EbK) Ed Eh

]
in the LMI (194) “as is” – do not multiply)

Introducing the variables

S = P−1, M = P−1
d , N = T−1, W = KP−1 = KS (106)

and performing a congruent transformation on inequality (194) by pre- and post- multiplying both
sides of it by the nonsingular, symmetric block–diagonal matrix diag(I, P−1, P−1

d ,T−1, I) = diag(I, S ,M,N, I),
this last LMI is equivalently transformed into:

LMI {[194]} < 0⇔ diag(I, S ,M,N, I) LMI {[194]} diag(I, S ,M,N, I) < 0

pre- multiplying:

diag(I, S ,M,N, I)


−S + εDDT A + BK A1 B1 0
(A + BK)T Λ 0 0 (Ea + EbK)T

AT
1 0 −Pd 0 ET

d
BT

1 0 0 −T ET
h

0 (Ea + EbK) Ed Eh −εI

 =


−S + εDDT A + BK A1 B1 0
S (A + BK)T S Λ 0 0 S (Ea + EbK)T

MAT
1 0 −I 0 MET

d
NBT

1 0 0 −I NET
h

0 (Ea + EbK) Ed Eh −εI


post- multiplying:

−S + εDDT A + BK A1 B1 0
S (A + BK)T S Λ 0 0 S (Ea + EbK)T

MAT
1 0 −I 0 MET

d
NBT

1 0 0 −I NET
h

0 (Ea + EbK) Ed Eh −εI

 diag(I, S ,M,N, I) =


−S + εDDT (A + BK)S A1M B1N 0
S (A + BK)T S ΛS 0 0 S (Ea + EbK)T

MAT
1 0 −M 0 MET

d
NBT

1 0 0 −N NET
h

0 (Ea + EbK)S Ed M EhN −εI

 =


−S + εDDT (AS + BW) A1M B1N 0
(AS + BW)T S ΛS 0 0 (EaS + EbW)T

MAT
1 0 −M 0 MET

d
NBT

1 0 0 −N NET
h

0 (EaS + EbW) Ed M EhN −εI

 < 0

(107)

Using now
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• the fact that S = S T ,

• the definition of Λ from(187),

• the definitions in (106),

the (2, 2)–element S ΛS in the last inequality (195) writes as

S ΛS = S [−P + Pd + KT T K + Q + KT RK]S
= S [−S −1 + M−1 + KT N−1K + Q + KT RK]S
= −S + S M−1S + WT N−1W + S QS + WT RW.

Now

• single out the −S term,

• and express the (remaining) term
S M−1S + WT N−1W + S QS + WT RW as

M̃T diag(M−1, N−1, Q, R)M̃ with M̃ 4
=


0 S 0 0 0
0 W 0 0 0
0 S 0 0 0
0 W 0 0 0

.
(Verify by carrying out the matrix multiplications. The result is a 5 × 5 “all–zero–matrix” except its
(2, 2)–element which is S M−1S + WT N−1W + S QS + WT RW)

Then LMI (195) becomes
−S + εDDT (AS + BW) A1M B1N 0
(AS + BW)T −S 0 0 (EaS + EbW)T

MAT
1 0 −M 0 MET

d
NBT

1 0 0 −N NET
h

0 (EaS + EbW) Ed M EhN −εI

 +

M̃T


M−1 0 0 0

0 N−1 0 0
0 0 Q 0
0 0 0 R

 M̃ < 0 (108)

which by Schur complement (see Remark 43 below) is equivalent to the LMI (189) of Theorem 69.
This completes the proof of the theorem. �.

(Proof of (100) still missing !!!)

Remark 43 Use the fact that
M−1 0 0 0

0 N−1 0 0
0 0 Q 0
0 0 0 R

 = −



−M 0 0 0

0 −N 0 0
0 0 −Q−1 0
0 0 0 −R−1



−1

If the demand for guaranteed cost is alleviated, following the same lines of the proof of Theorem
69, it is easy to prove the following Corollary.
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Corollary 44 For the uncertain system (83) (with input and state delays) there exist symmetric

positive-definite matrices P, Pd,T such that ∆Vk = V tot
k+1−V tot

k < 0 (with V tot
k = xT

k Pxk+
h∑

j=1
xT

k− jK
T T Kxk− j+

d∑
i=1

xT
k−iPd xk−i defined in (191)) holds for all admissible uncertainties if and only if there exist a pos-

itive scalar ε > 0, a matrix W ∈ <m×n and symmetric positive definite matrix S = P−1 ∈ <n×n,
M = P−1

d ∈ <
m×m, N = T−1 ∈ <m×m such that the following LMI is satisfied.



−S + εDDT AS + BW A1M B1N 0 0 0
∗ −S 0 0 (EaS + EbW)T S WT

∗ ∗ −M 0 MET
d 0 0

∗ ∗ ∗ −N NET
h 0 0

∗ ∗ ∗ ∗ −εI 0 0
∗ ∗ ∗ ∗ ∗ −M 0
∗ ∗ ∗ ∗ ∗ 0 −N


< 0. (109)

Furthermore, if matrix inequality (190) has a feasible solution, in terms of the variables {ε, W, S},
then the state feedback control law uk = WS −1xk = Kxk is a robustly stabilizing control law. �

LMIs (190) is a ”subset of the Generic” LMI (189) formally derived after removing the “appro-
priate” rows and columns i.e. the last two rows and columns containing the matrices Q, R.
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10 Three interesting (Sub)Cases of the generic GCC Problem
(& Application to NCS)

• Case1: GCC Synthesis for uncertain DT systems with only Input Delay i.e. xk+1 = (A +

∆A)xk + (B + ∆B)uk + (B1 + ∆B1)uk−h

• SubCase1a: Application of Case1 to NCS with “small” input delay

• Case2: GCC Synthesis for uncertain DT systems with only State Delay i.e. xk+1 = (A +

∆A)xk + (B + ∆B)uk + (A1 + ∆A1)xk−d

• Case3: GCC Synthesis for uncertain DT systems without Input or State Delay i.e. xk+1 =

(A + ∆A)xk + (B + ∆B)uk

Note that –as expected– for all the above cases the synthesis LMIs (to be derived) are a ”subset
of the Generic” LMI (189) after deleting the “appropriate” rows and columns.

10.1 GCC Analysis & Synthesis for uncertain DT systems with (only) Input
Delay

Open–loop DT system with state and input delay (NO STATE DELAY ⇒ A1 = ∆A1 = Ed = 0)
and uncertain dynamics

xk+1 = (A + ∆A)xk + (B + ∆B)uk + (B1 + ∆B1)uk−h (110)

with x ∈ <n and u ∈ <m and (since A1 = ∆A1 = Ed = 0)

[∆A ∆B ∆B1] = DF [Ea Eb Eh] (111)

with unknown (time-varying) matrix F satisfying FT F ≤ I. Furthermore h is an unknown constant
integer (delay units in the input), bounded as 0 ≤ h ≤ h∗ with h∗ known.

The cost function is the same as in (85). The closed–loop dynamics with uk = Kxk are

xk+1 = [A + BK + ∆A + ∆BK] xk + [B1 + ∆B1] Kxk−h

= [A + BK + DF(Ea + EbK)] xk + [B1 + DFEh] Kxk−h
4
= AC(k)xk + BH(k)Kxk−h (112)

with the uncertain matrices AC , BH , defined as

AC
4
= A + BK + DF(Ea + EbK), BH

4
= B1 + DFEh (113)

10.1.1 GCC Analysis for systems with (only) Input Delay

The sufficient condition for the existence of memoryless state feedback GCC law is a special “case”
of Theorem (68)

Theorem 45 The control law u∗k = Kxk is a guaranteed cost controller for (110) if there exist
symmetric positive definite matrices P ∈ <n×n,T ∈ <m×m such that for any admissible uncertain
matrix F the following matrix inequality holds:[

Π AT
C PBH

∗ BT
H PBH − T

]
< 0 (114)
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where

Π
4
= AT

C PAC −P + KT T K + Q + KT RK︸                            ︷︷                            ︸
4
= AT

C PAC + Λ (115)

with the obvious definition for Λ and the uncertain closed–loop system matrices AC , BH already
defined in (113). Moreover the closed-loop cost function satisfies

Jcl ≤ J∗ 4= xT
0 Px0 +

h∑
i=1

xT
−iK

T T Kx−i ≤ λmax(UT PU) + h∗λmax(UT KT T KU) (116)

Proof: Defining

• the “positive with respect to xk” scalar function

V tot
k = V1

k + V3
k = xT

k Pxk +

h∑
j=1

xT
k− jK

T T Kxk− j (117)

with P, T > 0 being SPDef matrices of appropriate dimensions,

• the augmented state vector ξk
4
=

[
xk

Kxk−h

]
∈ <(n+m) which allows to write the closed-loop dynamics (112) as

xk+1 = AC(k)xk + BH(k)Kxk−h = [AC BH] ξk

the forward difference ∆Vk = V tot
k+1 − V tot

k along the trajectories of the closed-loop system (112) can be expressed in terms of
ξk as follows:

∆V1
k –term:

V1
k = xT

k Pxk can be written as ξT
k

(
P 0
0 0

)
ξk

Using xk+1 = [AC BH] ξk , the V1
k+1 term writes as

V1
k+1 = xT

k+1Pxk+1 = ξT
k [AC BH]T P [AC BH] ξk

= ξT
k

[
AT

C PAC AT
C PBH

∗ BT
H PBH

]
ξk

and hence

∆V1
k = V1

k+1 − V1
k = ξT

k

[
AT

C PAC − P AT
C PBH

∗ BT
H PBH

]
ξk (118)

∆V3
k –term:

∆V3
k =

 h∑
j=1

xT
k+1− jK

T T Kxk+1− j

 −
 h∑

j=1

xT
k− jK

T T Kxk− j


= xT

k KT T Kxk − xT
k−hKT T Kxk−h

= ξT
k

(
KT T K 0

0 −T

)
ξk (119)

Combining (119),(118)

∆V tot
k = ∆V1

k + ∆V3
k

= ξT
k

[
AT

C PAC − P + KT T K AT
C PBH

∗ BT
H PBH − T

]
ξk

Recalling the definition Π
4
= AT

C PAC − P + KT T K + Q + KT RK 4
= AT

C PAC + Λ (see (115)) the (1, 1)-element writes as
Π − (Q + KT RK) and the previous expression for ∆V tot

k becomes

∆V tot
k = ξT

k

([
Π AT

C PBH
∗ BT

H PBH − T

]
−

[
(Q + KT RK) 0

∗ 0

])
ξk
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From the assumption about the negative definiteness of the matrix appearing in Theorem 45, it is clear that the “wish”
for ∆V tot

k < 0 is indeed satisfied since (in that case)

∆V tot
k < −ξT

k

[
(Q + KT RK) 0

∗ 0

]
ξk

= −xT
k

[
Q + KT RK

]
xk

≤ −λmin(Q + KT RK)‖xk‖
2 < 0. (120)

Noting that Q + KT RK > 0 the last inequality implies asymptotic (quadratic) stability (must use “partial” stability
arguments).

Following the same arguments as in Theorem (68) the closed-loop cost function satisfies

Jcl =

∞∑
k=0

xT
k

[
Q + KT RK

]
xk ≤ V tot

0

= xT
0 Px0 +

h∑
i=1

xT
−iK

T T Kx−i
4
= J∗ (121)

The guaranteed cost J∗ in (121) depends only on the initial conditions, and not on the uncertainties.
Adopting the deterministic method to remove this dependence on the initial condition, it is assumed that the initial state

of the system (110) is arbitrary but belongs to the set x−i ∈ <
n : x−i = Uui, uT

i ui ≤ 1, i = 0, 1, 2, . . . , h∗ where U is a given
matrix. The cost bound then obeys

J∗ 4= xT
0 Px0 +

h∑
i=1

xT
−iK

T T Kx−i ≤ λmax(UT PU) + h∗λmax(UT KT T KU) (122)

This completes the proof of the theorem. �

10.1.2 GCC Synthesis for systems with (only) Input Delay

Theorem 46 For the uncertain (input delayed) system (110) and the cost function (85) there exist
symmetric positive-definite matrices P,T such that matrix inequality (114) holds for all admissible
uncertainties if and only if there exist a positive scalar ε > 0, a matrix W ∈ <m×n and symmetric
positive definite matrices S = P−1 ∈ <n×n, N = T−1 ∈ <m×m such that the following LMI is satisfied.

−S + εDDT AS + BW B1N 0 0 0 0
∗ −S 0 (EaS + EbW)T WT S WT

∗ ∗ −N NET
h 0 0 0

∗ ∗ ∗ −εI 0 0 0
∗ ∗ ∗ ∗ −N 0 0
∗ ∗ ∗ ∗ ∗ −Q−1 0
∗ ∗ ∗ ∗ ∗ ∗ −R−1


< 0. (123)

Furthermore, if matrix inequality (123) has a feasible solution in terms of the variables {ε, W,
S, N } then the state feedback control law uk = WS −1xk is a guaranteed cost control law and the
corresponding closed-loop cost function satisfies J ≤ (1 + h∗)λmax(US −1U)

Remark 47 Note that the LMI (123) of Theorem 46, results from the “Generic” LMI (189) after
removing the third row/column (containing M, A1, Ed which are “zero” matrices since they involve
state-delay) and the sixth row/column (involve M, S ) with M being a “zero” while matrix S is already
constrained via LMI (123)

Proof: Starting from the matrix inequality (114) in Theorem 45 i.e.[
Π AT

C PBH
∗ BT

H PBH − T

]
< 0

and recalling from (115) the definitions
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Π
4
= AT

C PAC − P + KT T K + Q + KT RK 4
= AT

C PAC + Λ

Λ
4
= −P + KT T K + Q + KT RK = ΛT

can decompose the matrix inequality (114) as[
AT

C PAC AT
C PBH

∗ BT
H PBH

]
+

[
Λ 0
0 −T

]
=[

AT
C

BT
H

]
P [AC BH] +

[
Λ 0
0 −T

]
< 0 (124)

which by Schur complement (see Lemma 17) is equivalent to −P−1 AC BH
AT

C Λ 0
BT

H 0 −T

 < 0 (125)

Substituting in (125) the defining expressions of the uncertain matrices from (113), i.e. AC = A + BK + DF(Ea + EbK),
BH = B1 + DFEh...

...and separating the nominal from the uncertain parts (i.e. those including matrix F),

(125) can be equivalently written as  −P−1 A + BK B1
(A + BK)T Λ 0

BT
1 0 −T

 +

 D
0
0

 F
[

0 (Ea + EbK) Eh
]

+

[
0 (Ea + EbK) Eh

]T
FT

 D
0
0


T

< 0 (126)

Inequality (126) is clearly of the form G + M∆N + NT ∆T MT < 0, with ∆ → F, M →

 D
0
0

 hence εMMT = +εDDT 0 0
0 0 0
0 0 0

, N →
[

0 (Ea + EbK) Ed
]

and its “G”–part symmetric.

Hence Lemma 5 can be used to transform (126) into the following equivalent “G + εMMT + 1
ε NT RN ” matrix inequality

(valid ∀ admissible uncertainties F and ∀ ε > 0)

(126) ⇔ ∃ ε > 0,

 −P−1+εDDT A + BK B1
(A + BK)T Λ 0

BT
1 0 −T


+

1
ε

 0
(Ea + EbK)T

ET
d

 [ 0 (Ea + EbK) Ed
]
< 0,

which, by Schur Complement is equivalent (⇔) to
−P−1 + εDDT A + BK B1 0

(A + BK)T Λ 0 (Ea + EbK)T

BT
1 0 −T ET

h
0 (Ea + EbK) Eh −εI

 < 0

(127)

Remark 48 (the important trick here is to leave the term

1
ε

 0
(Ea + EbK)T

ET
d

 [ 0 (Ea + EbK) Ed
]

in the last LMI “as is” – do not multiply)
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Introducing the variables

S = P−1, N = T−1, W = KP−1 = KS (128)

and (performing a congruent transformation on inequality (127) by) pre- and post- multiplying both sides of it by the nonsin-
gular, symmetric block–diagonal matrix diag(I, P−1,T−1, I) = diag(I, S ,N, I),

(127)⇔ diag(I, S ,N, I) (127) diag(I, S ,N, I) < 0

pre- multiplying:

diag(I, S ,N, I)


−S + εDDT A + BK B1 0
(A + BK)T Λ 0 (Ea + EbK)T

BT
1 0 −T ET

h
0 (Ea + EbK) Eh −εI

 =


−S + εDDT A + BK B1 0
S (A + BK)T S Λ 0 S (Ea + EbK)T

NBT
1 0 −I NET

h
0 (Ea + EbK) Eh −εI


post- multiplying:

−S + εDDT A + BK B1 0
S (A + BK)T S Λ 0 S (Ea + EbK)T

NBT
1 0 −I NET

h
0 (Ea + EbK) Eh −εI

 diag(I, S ,N, I) =


−S + εDDT (A + BK)S B1N 0
S (A + BK)T S ΛS 0 S (Ea + EbK)T

NBT
1 0 −N NET

h
0 (Ea + EbK)S EhN −εI

 =


−S + εDDT (AS + BW) B1N 0
(AS + BW)T S ΛS 0 (EaS + EbW)T

NBT
1 0 −N NET

h
0 (EaS + EbW) EhN −εI

 (129)

Using
• the fact that S = S T ,

• the definition of Λ from(115),

• the definitions in (128),
the (2, 2)–element S ΛS in (129) writes as

S ΛS = S [−P + KT T K + Q + KT RK]S

= S [−S −1 + KT N−1K + Q + KT RK]S

= −S + WT N−1W + S QS + WT RW.

Now
• single out the −S term,

• and express the (remaining) term WT N−1W+S QS +WT RW as M̃T diag( N−1, Q, R)M̃ with M̃ 4
=

 0 W 0 0
0 S 0 0
0 W 0 0


Then LMI (129) becomes 

−S + εDDT (AS + BW) B1N 0
(AS + BW)T −S 0 (EaS + EbW)T

NBT
1 0 −N NET

h
0 (EaS + EbW) EhN −εI

 +

M̃T

 N−1 0 0
0 Q 0
0 0 R

 M̃ < 0 (130)

which by Schur complement (see Remark 49 below) is equivalent to the LMI (123) of Theorem 46. This completes the proof
of the theorem. �
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Remark 49 Use

 N−1 0 0
0 Q 0
0 0 R

 = −


 −N 0 0

0 −Q−1 0
0 0 −R−1



−1

If the demand for guaranteed cost is alleviated, following the same lines of the proof of Theorem
46, it is easy to prove the following Corollary.

Corollary 50 For the uncertain (input delayed) system (110) there exist symmetric positive-definite

matrices P,T such that ∆Vk = V tot
k+1−V tot

k < 0 (with V tot
k defined as V tot

k = xT
k Pxk +

h∑
j=1

xT
k− jK

T T Kxk− j)

holds for all admissible uncertainties if and only if there exist a positive scalar ε > 0, a matrix
W ∈ <m×n and symmetric positive definite matrices S = P−1 ∈ <n×n, N = T−1 ∈ <m×m such that
the following LMI is satisfied.

−S + εDDT AS + BW B1N 0 0
∗ −S 0 (EaS + EbW)T WT

∗ ∗ −N NET
h 0

∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ −N


< 0. (131)

Furthermore, if matrix inequality (131) has a feasible solution, in terms of the variables {ε, W, S},
then the state feedback control law uk = WS −1xk = Kxk is a robustly stabilizing control law. �

LMIs (131) is a ”subset of the Generic” LMI (123) formally derived after removing the “appropriate”
rows and columns i.e. the last two rows and columns containing the matrices Q, R.
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10.2 GCC Analysis & Synthesis for uncertain DT systems with (only) State
Delay

Open–loop DT system with (only) state delay and uncertain dynamics

xk+1 = (A + ∆A)xk + (A1 + ∆A1)xk−d + (B + ∆B)uk (132)

with x ∈ <n and u ∈ <m and NO INPUT DELAY (hence B1 = ∆B1 = Eh = 0)

[∆A ∆A1 ∆B] = DF [Ea Ed Eb] (133)

with the unknown (time-varying) matrix F satisfying FT F ≤ I. Furthermore d is an unknown
constant integer (delay units in the state), bounded as 0 ≤ d ≤ d∗ with d∗ known. The closed–loop
dynamics with uk = Kxk are

xk+1 = [A + BK + DF(Ea + EbK)] xk + [A1 + DFEd] xk−d
4
= AC(k)xk + AD(k)xk−h (134)

with the uncertain matrices AC , AD, defined as

AC
4
= A + BK + DF(Ea + EbK), AD

4
= A1 + DFEd (135)

10.2.1 GCC Analysis for systems with (only) State Delay

The sufficient condition for the existence of memoryless state feedback GCC law is a special “case”
of Theorem (68)

Theorem 51 The control law u∗k = Kxk is a guaranteed cost controller for (132) if there exist
symmetric positive definite matrices P, Pd ∈ <

n×n such that for any admissible uncertain matrix F
the following matrix inequality holds:[

Π AT
C PAD

∗ AT
DPAD − Pd

]
< 0 (136)

where

Π
4
= AT

C PAC −P + Pd + Q + KT RK︸                       ︷︷                       ︸
4
= AT

C PAC + Λ (137)

with the obvious definition for Λ and the uncertain closed–loop system matrices AC , AD already
defined in (135). Moreover the closed-loop cost function satisfies

Jcl ≤ J∗ 4= xT
0 Px0 +

d∑
i=1

xT
−iPd x−i ≤ λmax(UT PU) + d∗λmax(UT PdU) (138)

Proof 52 Defining

• the “positive with respect to xk” function

V tot
k = V1

k + V2
k = xT

k Pxk +

d∑
i=1

xT
k−iPd xk−i (139)

with P, Pd > 0 being SPDef matrices of appropriate dimensions 0 < P, Pd ∈ <
n×n,
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• the augmented state vector ξk
4
=

[
xk

xk−d

]
∈ <2n which allows to write the closed-loop dynamics (134) as

xk+1 = AC(k)xk + AD(k)xk−h = [AC AD] ξk

the forward difference ∆Vk = V tot
k+1 − V tot

k along the trajectories of the closed-loop system (134) can be expressed in
terms of ξk as follows:

∆V1
k –term:

V1
k = xT

k Pxk can be written as ξT
k

(
P 0
0 0

)
ξk

Using xk+1 = [AC AD] ξk , the V1
k+1 term writes as

V1
k+1 = xT

k+1Pxk+1 = ξT
k [AC AD]T P [AC AD] ξk

= ξT
k

[
AT

C PAC AT
C PAD

∗ AT
DPAD

]
ξk

and

∆V1
k = V1

k+1 − V1
k = ξT

k

[
AT

C PAC − P AT
C PAD

∗ AT
DPAD

]
ξk (140)

∆V2
k –term:

∆V2
k =

 d∑
i=1

xT
k+1−iPd xk+1−i

 −
 d∑

i=1

xT
k−iPd xk−i


= xT

k Pd xk − xT
k−dPd xk−d

= ξT
k

(
Pd 0
0 −Pd

)
ξk (141)

Combining (141),(140)

∆V tot
k = ∆V1

k + ∆V2
k

= ξT
k

[
AT

C PAC − P + Pd AT
C PAD

∗ AT
DPAD − Pd

]
ξk

Defining (see (137) ) Π
4
= AT

C PAC − P + Pd + Q + KT RK 4
= AT

C PAC + Λ the (1, 1)-element writes as Π − (Q + KT RK) and
the previous expression for ∆V tot

k becomes

∆V tot
k = ξT

k

([
Π AT

C PAD
∗ AT

DPAD − Pd

]
−

[
(Q + KT RK) 0

∗ 0

])
ξk

From the assumption about the negative definiteness of the matrix appearing in Theorem 51, it is clear that the “wish”
for ∆V tot

k < 0 is indeed satisfied since (in that case)

∆V tot
k ≤ −ξT

k

[
(Q + KT RK) 0

∗ 0

]
ξk

= −xT
k

[
Q + KT RK

]
xk

≤ −λmin(Q + KT RK)‖xk‖
2 < 0. (142)

Noting that Q + KT RK > 0, the last inequality implies asymptotic (quadratic) stability (must use “partial” stability
arguments).

Following the same arguments as in Theorem (68) the closed-loop cost function

Jcl =

∞∑
k=0

xT
k

[
Q + KT RK

]
xk ≤ V tot

0

= xT
0 Px0 +

d∑
i=1

xT
−iPd x−i

4
= J∗ (143)

The guaranteed cost J∗ in (143) depends only on the initial conditions, and not on the uncertainties.
Adopting the deterministic method to remove this dependence on the initial condition, it is assumed that the initial state

of the system (132) is arbitrary but belongs to the set x−i ∈ <
n : x−i = Uui, uT

i ui ≤ 1, i = 0, 1, 2, . . . , d∗ where U is a given
matrix. The cost bound then obeys

J∗ 4= xT
0 Px0 +

d∑
i=1

xT
−iPd x−i ≤ λmax(UT PU) + d∗λmax(UT PdU) (144)

This completes the proof of the theorem.
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10.2.2 GCC Synthesis for systems with (only) State Delay

Theorem 53 For the uncertain (state delayed) system (132) and the cost function (85) there exist
symmetric positive-definite matrices P, Pd such that matrix inequality (136) holds for all admissible
uncertainties if and only if there exist a positive scalar ε > 0, a matrix W ∈ <m×n and symmetric
positive definite matrices S = P−1 ∈ <n×n, M = P−1

d ∈ <m×m such that the following LMI is
satisfied.

−S + εDDT AS + BW A1M 0 0 0 0
(AS + BW)T −S 0 (EaS + EbW)T S S WT

MAT
1 0 −M MET

d 0 0 0
0 (EaS + EbW) Ed M −εI 0 0 0
0 S 0 0 −M 0 0
0 S 0 0 0 −Q−1 0
0 W 0 0 0 0 −R−1


< 0.

(145)

Furthermore, if matrix inequality (145) has a feasible solution in terms of the variables {ε, W,
S, M } then the state feedback control law uk = WS −1xk is a guaranteed cost control law and the
corresponding closed-loop cost function satisfies J ≤ (d∗)λmax(US −1U)

Remark 54 Note that the LMI (145) of Theorem 53, results from the “Generic” LMI (189) after
removing the fourth row/column (involve B1,N) and the seventh row/column (involve W,N).

Proof 55 Starting from the matrix inequality (136) in Theorem 51 i.e.[
Π AT

C PAD
∗ AT

DPAD − Pd

]
< 0

and recalling from (137) the definitions
Π
4
= AT

C PAC−P + Pd + Q + KT RK 4
= AT

C PAC + Λ, with

Λ
4
= −P + Pd + Q + KT RK = ΛT , can decompose this LMI as[

AT
C PAC AT

C PAD
∗ AT

DPAD

]
+

[
Λ 0
0 −Pd

]
=[

AT
C

AT
D

]
P [AC AD] +

[
Λ 0
0 −Pd

]
< 0 (146)

which by Schur complement (see Lemma 17) is equivalent to −P−1 AC AD
AT

C Λ 0
AT

D 0 −Pd

 < 0 (147)

Substituting in (147) the defining expressions of the uncertain matrices from (135), i.e. AC = A + BK + DF(Ea + EbK),
AD

4
= A1 + DFEd , and separating the nominal from the uncertain parts (i.e. those including matrix F), (147) can be

equivalently written as  −P−1 A + BK A1
(A + BK)T Λ 0

AT
1 0 −Pd

 +

 D
0
0

 F
[

0 (Ea + EbK) Ed
]

+

[
0 (Ea + EbK) Ed

]T
FT

 D
0
0


T

< 0 (148)
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Inequality (148) is clearly of the form G + M∆N + NT ∆T MT < 0, with ∆ → F, M →

 D
0
0

 hence εMMT = +εDDT 0 0
0 0 0
0 0 0

, N →
[

0 (Ea + EbK) Ed
]

and its “G”–part symmetric.

Hence Lemma 5 can be used to transform (148) into the following equivalent “G + εMMT + 1
ε NT RN” inequality (valid

∀ admissible uncertainties F and ∀ ε > 0)

(148) ⇔ ∃ ε > 0,

 −P−1+εDDT A + BK A1
(A + BK)T Λ 0

AT
1 0 −Pd


+

1
ε

 0
(Ea + EbK)T

ET
d

 [ 0 (Ea + EbK) Ed
]
< 0 (149)

which, by Schur Complement, is equivalent (⇔) to
−P−1 + εDDT A + BK A1 0

(A + BK)T Λ 0 (Ea + EbK)T

AT
1 0 −Pd ET

d
0 (Ea + EbK) Ed −εI

 < 0

(150)

Remark 56 the important trick at this step is to leave the term

1
ε

 0
(Ea + EbK)T

ET
d

 [ 0 (Ea + EbK) Ed
]

in the last LMI “as is” – do not multiply

Introducing the variables
S = P−1, M = P−1

d , W = KP−1 = KS (151)
and (performing a congruent transformation on inequality (150) by) pre- and post- multiplying both sides of it by the nonsin-
gular, symmetric block–diagonal matrix diag(I, P−1, P−1

d , I) = diag(I, S ,M, I),
(150)⇔ diag(I, S ,M, I) (150) diag(I, S ,M, I) < 0

post- multiplying:
−S + εDDT A + BK A1 0
(A + BK)T Λ 0 (Ea + EbK)T

AT
1 0 −Pd ET

d
0 (Ea + EbK) Ed −εI

 diag(I, S ,M, I) =


−S + εDDT (A + BK)S A1 M 0
(A + BK)T ΛS 0 (Ea + EbK)T

AT
1 0 −Pd M ET

d
0 (Ea + EbK)S Ed M −εI


and finally pre- multiplying:

diag(I, S ,M, I)


−S + εDDT (A + BK)S A1 M 0
(A + BK)T ΛS 0 (Ea + EbK)T

AT
1 0 −I ET

d
0 (Ea + EbK)S Ed M −εI

 =


−S + εDDT (A + BK)S A1 M 0
S (A + BK)T S ΛS 0 S (Ea + EbK)T

MAT
1 0 −M MET

d
0 (Ea + EbK)S Ed M −εI

 =


−S + εDDT (AS + BW) A1 M 0
(AS + BW)T S ΛS 0 (EaS + EbW)T

MAT
1 0 −M MET

d
0 (EaS + EbW) Ed M −εI

 < 0

(152)
Using
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• the fact that S = S T ,

• the definition of Λ from(137),

• the definitions in (151),

the (2, 2)–element S ΛS in (152) writes as

S ΛS = S [−P + Pd + Q + KT RK]S

= S [−S −1 + M−1 + Q + KT RK]S

= −S + S T M−1S + S QS + WT RW.

Now

• single out the −S term,

• and express the (remaining) term S T M−1S +S QS +WT RW as M̃T diag(M−1, Q, R)M̃ with M̃ 4
=

 0 S 0 0
0 S 0 0
0 W 0 0

,
(Verify by carrying out the matrix multiplications. The result is a 4 × 4 “all–zero–matrix” except its (2, 2)–element which is
S T M−1S + S QS + WT RW)

LMI (152) becomes 
−S + εDDT (AS + BW) A1 M 0
(AS + BW)T −S 0 (EaS + EbW)T

MAT
1 0 −M MET

d
0 (EaS + EbW) Ed M −εI

 +

M̃T

 M−1 0 0
0 Q 0
0 0 R

 M̃ < 0 (153)

which by Schur complement is equivalent to the LMI (145) of Theorem 53. This completes the proof of the theorem.

Remark 57 Use

 M−1 0 0
0 Q 0
0 0 R

 = −


 −M 0 0

0 −Q−1 0
0 0 −R−1



−1

If the demand for guaranteed cost is alleviated, following the same lines of the proof of Theorem
53, it is easy to prove the following Corollary.

Corollary 58 For the uncertain (state delayed) system (132) there exist symmetric positive-definite

matrices P,T such that ∆Vk = V tot
k+1 − V tot

k < 0 (with V tot
k = xT

k Pxk +
d∑

i=1
xT

k−iPd xk−i holds for all

admissible uncertainties if and only if there exist a positive scalar ε > 0, a matrix W ∈ <m×n and
symmetric positive definite matrices S = P−1 ∈ <n×n, M = P−1

d ∈ <
m×m such that the following LMI

is satisfied. 

−S + εDDT AS + BW A1M 0 0
(AS + BW)T −S 0 (EaS + EbW)T S

MAT
1 0 −M MET

d 0
0 (EaS + EbW) Ed M −εI 0
0 S 0 0 −M
0 S 0 0 0
0 W 0 0 0


< 0. (154)

Furthermore, if matrix inequality (154) has a feasible solution in terms of the variables {ε, W, S}
then the state feedback control law uk = WS −1xk = Kxk is a robustly stabilizing control law.
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10.3 GCC Analysis & Synthesis for uncertain DT systems without Delays
Open–loop DT system with uncertain dynamics but without input or state delays

xk+1 = (A + ∆A)xk + (B + ∆B)uk, x ∈ <n, u ∈ <m (155)

• NO INPUT DELAY⇒ B1 = ∆B1 = Eh = 0

• NO STATE DELAY⇒ A1 = ∆A1 = Ed = 0

and

[∆A ∆B] = DF [Ea Eb] (156)

the unknown (time-varying) matrix F satisfying FT F ≤ I. The closed–loop dynamics with uk = Kxk

are

xk+1 = [A + BK + DF(Ea + EbK)] xk
4
= AC(k)xk (157)

with the obvious definition for the uncertain closed-loop matrix AC .
The sufficient condition for the existence of memoryless state feedback GCC law is a special

“case” of Theorem (68)

Theorem 59 The control law u∗k = Kxk is a guaranteed cost controller for (155) if there exist
symmetric positive definite matrix P ∈ <n×n such that for any admissible uncertain matrix F the
following matrix inequality holds:

0 > Π
4
= AT

C PAC −P + Q + KT RK︸               ︷︷               ︸ = AT
C PAC + Λ < 0

Λ (158)

with the obvious definition for Λ and the uncertain closed–loop system matrix AC already defined
in (157). Moreover, following the same arguments as in Theorem (68), the closed-loop cost function
satisfies

Jcl ≤ J∗ 4= xT
0 Px0 ≤ λmax(UT PU) (159)

Proof 60 Defining the “quadratic candidate Lyapunov function function

Vk = xT
k Pxk (160)

with P > 0 being a SPDef matrix of appropriate dimensions 0 < PT = P ∈ <n×n, the forward difference ∆Vk = Vk+1 − Vk
along the trajectories of the closed-loop system (157) can be expressed as

∆Vk = Vk+1 − Vk = xT
k

(
AT

C PAC − P
)

xk

= xT
k

[
Π − (Q + KT RK)

]
xk (161)

From the assumption about the negative definiteness of the matrix appearing in Theorem 59, it is clear that the “wish”
for ∆Vk < 0 is indeed satisfied since (in that case)

∆Vk = xT
k Πxk − xT

k

[
Q + KT RK

]
xk

< −xT
k

[
Q + KT RK

]
xk

≤ −λmin(Q + KT RK)‖xk‖
2 < 0. (162)

Noting that Q + KT RK > 0, the last inequality implies quadratic stability. Following the same arguments as in Theorem
(68) the closed-loop cost function satisfies

Jcl =

∞∑
k=0

xT
k

[
Q + KT RK

]
xk ≤ V0 = xT

0 Px0
4
= J∗ (163)
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The guaranteed cost J∗ in (163) depends only on the initial condition, and not on the uncertainties. The deterministic
approach to remove this dependence on the initial condition, is to assume that the initial state of the system (155) is arbitrary
but belongs to the set x0 ∈ <

n : x0 = Uu0, uT
0 u0 ≤ 1 where U is a given matrix. The cost bound then obeys

J∗ 4= xT
0 Px0 ≤ λmax(UT PU) (164)

This completes the proof of the theorem.

GCC SYNTHESIS FOR UNCERTAIN DISCRETE TIME SYSTEMS (WITHOUT DELAYS)

Theorem 61 For the uncertain system (155) and the cost function (85) there exist symmetric positive-
definite matrix P ∈ <n×n such that matrix inequality (158) holds for all admissible uncertainties if
and only if there exist a positive scalar ε > 0, a matrix W ∈ <m×n and symmetric positive definite
matrix S = P−1 ∈ <n×n such that the following LMI is satisfied.

−S + εDDT AS + BW 0 0 0
(AS + BW)T −S (EaS + EbW)T S WT

0 (EaS + EbW) −εI 0 0
0 S 0 −Q−1 0
0 W 0 0 −R−1

 < 0 (165)

Furthermore, if matrix inequality (165) has a feasible solution, in terms of the variables {ε, W, S},
then the state feedback control law uk = WS −1xk is a guaranteed cost control law and the corre-
sponding closed-loop cost function satisfies J ≤ (d∗)λmax(US −1U)

Remark 62 Note that the LMI (165) of Theorem 61, results from the “Generic” LMI (189) after
removing the third row/column (involve M, A1, Ed which are “zero” matrices), the sixth row/column
(involve M, S ) with M being a “zero” matrix while matrix S is already constrained via LMI (123)
and the seventh row/column (involve W,N).

Proof 63 Starting from the matrix inequality (158) in Theorem 59 i.e.

Π
4
= AT

C PAC − P + Q + KT RK = AT
C PAC + Λ < 0

can write it as “LMI” Λ − AT
C(−P−1)−1AC < 0 which,

• by Schur complement (Lemma 17),

• use of the defining expression A + BK + DF(Ea + EbK) 4= AC for the uncertain matrix AC and separation of the
nominal from the uncertain parts,

• use of Lemma 5 (transforms specific LMIs into the equivalent “G + εMMT + 1
ε NT RN” form,

is equivalent to

(158)⇔ Λ − AT
C(−P−1)−1AC < 0⇔

[
−P−1 AC

AT
C Λ

]
< 0⇔

[
−P−1 (A + BK)

(A + BK)T Λ

]
+

[
D
0

]
F

[
0 (Ea + EbK)

]
+

[
0 (Ea + EbK)

]T
FT

[
D
0

]T

< 0⇔[
−P−1+εDDT A + BK

(A + BK)T Λ

]
+

1
ε

[
0

(Ea + EbK)T

] [
0 (Ea + EbK)

]
< 0⇔ −P−1 + εDDT A + BK 0

(A + BK)T Λ (Ea + EbK)T

0 (Ea + EbK) −εI

 < 0 (166)

Introducing the variables

S = P−1, W = KP−1 = KS (167)

and (performing a congruent transformation on inequality (166) by) pre- and post- multiplying both sides of it by the
nonsingular, symmetric block–diagonal matrix diag(I, P−1, I) = diag(I, S , I),
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post- multiplying:  −S + εDDT A + BK 0
(A + BK)T Λ (Ea + EbK)T

0 (Ea + EbK) −εI

 diag(I, S , I) =

 −S + εDDT (A + BK)S 0
(A + BK)T ΛS (Ea + EbK)T

0 (Ea + EbK)S −εI


and finally pre- multiplying:

diag(I, S , I)

 −S + εDDT (A + BK)S 0
(A + BK)T ΛS (Ea + EbK)T

0 (Ea + EbK)S −εI

 =

 −S + εDDT (AS + BW) 0
(AS + BW)T S ΛS (EaS + EbW)T

0 (EaS + EbW) −εI

 < 0

(168)

Using the fact that S = S T , the definition of Λ from(158) and the definitions in (167), the (2, 2)–element S ΛS in (152)
writes as

S ΛS = S [−P + Q + KT RK]S = S [−S −1 + Q + KT RK]S

= −S + S QS + WT RW

Now, single out the −S term, and express the (remaining) term S QS + WT RW as 0 0
S T WT

0 0


[

Q 0
0 R

] [
0 S 0
0 W 0

]
= M̃T diag( Q, R)M̃

with M̃ 4
=

[
0 S 0
0 W 0

]
. LMI (168) becomes thus

 −S + εDDT (AS + BW) 0
(AS + BW)T −S (EaS + EbW)T

0 (EaS + EbW) −εI

 +

 0 0
S T WT

0 0


[

Q 0
0 R

] [
0 S 0
0 W 0

]
< 0 (169)

which by Schur complement is equivalent to the LMI (165) of Theorem 61. This completes the proof of the theorem.

10.4 Special case: Robust Stabilization of DT systems with norm–bounded
uncertainties (no Delays - no GCC)

If the demand for guaranteed cost is alleviated, following the same lines of the proof of Theorem 61,
it is easy to prove the following Corollary.

Corollary 64 For the uncertain system (155) there exist a symmetric positive-definite matrix P such
that ∆Vk = Vk+1 − Vk = xT

k

(
AT

C PAC − P
)

xk < 0 (with Vk = xT
k Pxk) holds for all admissible un-

certainties if and only if there exist a positive scalar ε > 0, a matrix W ∈ <m×n and a symmetric
positive definite matrix S = P−1 ∈ <n×n such that the following LMI is satisfied. −S + εDDT AS + BW 0

(AS + BW)T −S (EaS + EbW)T

0 (EaS + EbW) −εI

 < 0 (170)

Furthermore, if matrix inequality (170) has a feasible solution, in terms of the variables {ε, W, S},
then the state feedback control law uk = WS −1xk = Kxk is a robustly stabilizing control law.
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Proof 65 Defining (as already done in (160), (161)) the “quadratic candidate Lyapunov function
function

Vk = xT
k Pxk (171)

with P > 0 being a SPDef matrix of appropriate dimensions 0 < PT = P ∈ <n×n, the “wish” for
∆Vk = Vk+1 − Vk < 0 along the trajectories of the closed-loop system (157) can be equivalently
expressed as

∆Vk = xT
k

(
AT

C PAC − P
)

xk < 0
m

−P − AT
C(−P−1)−1AC < 0
m[

−P−1 AC

AT
C −P

]
< 0

m[
−P−1 A + BK

(A + BK)T −P

]
+

[
D
0

]
F

[
0 (Ea + EbK)

]
+

[
0 (Ea + EbK)

]T
FT

[
D
0

]T

< 0

m[
−P−1+εDDT A + BK
(A + BK)T −P

]
+ 1
ε

[
0

(Ea + EbK)T

] [
0 (Ea + EbK)

]
< 0

m −P−1 + εDDT A + BK 0
(A + BK)T −P (Ea + EbK)T

0 (Ea + EbK) −εI

 < 0

(172)

• Introducing S = P−1, W = KP−1 = KS ,

• perform a congruent transformation on (172) via the nonsingular symmetric block–diagonal
matrix I 0 0

0 P−1 0
0 0 I

 =

 I 0 0
0 S 0
0 0 I

 > 0,

LMI (172) becomes −S + εDDT (AS + BW) 0
(AS + BW)T −S (EaS + EbW)T

0 (EaS + EbW) −εI

 < 0. (173)

which is LMI (170).
Hence if the above LMI has a feasible solution w.r.t the variables {ε,W, S } with { ε > 0, W ∈

<m×n SPD matrix S = P−1 ∈ <n×n then the state feedback control law uk = WS −1xk is a robustly
stabilizing control law.
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Remark 66 If there are no uncertainties (∆A = “0′′ = ∆B) the previous result ends up to the well
known state feedback synthesis via LMI i.e. uk = WS −1xk with W, S being the feasible solution to
the following LMI [

−S AS + BW
(AS + BW)T −S

]
< 0 (174)
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11 GCC Analysis & Synthesis for NETWORKED CONTROL
SYSTEMS (NCS)

An application of section 10.1 on GCC Analysis & Synthesis for uncertain DT systems with (only)
Input Delay.... Case1 on NCS with “smal” delay.....based on References [13, 14]...

Idea: NCS with varying networked induced delay less than one sampling period (“smal” delay)
and no packet drops behave as DT systems with input delay.

ZOH

Periodic
Sampler

h

x(kh)Delay

t
k DISCRETE TIME

CONTROLLER
u =-K x(kh)k sf

u(t)
PLANT

x =A x(t)+B u(t)(t) c c

y(t)=C x(t)c

Figure 12: NCS structural framework (from [13, 14])

11.1 NCS Dynamics & Discretization

NCS Dynamics: The dynamics of the SISO–NCS under investigation is described by the com-
bination of a continuous–time linear time–invariant plant with a discrete–time time–invariant con-
troller [15, 16, 17, 18, 13, 14].

ẋ(t) = Acx(t) + Bcû(t), y(t) = Ccx(t)
t ∈

[
kh + τk, kh + h + τk+1

)
0 ≤ τmin < τ

k < τmax ≤ h

û(t) =

 ûk−1, t ∈
[
kh − h + τk−1, kh + τk

)
ûk, t ∈

[
kh + τk, kh + h + τk+1

)
.

(175)

with x ∈ <n and u, y ∈ < and appropriately defined initial conditions. The aggregate input delay
τk is uncertain and time–varying with known bounds (0 ≤ τmin ≤ τk ≤ τmax ≤ h). This descrip-
tion corresponds to a constant and known sampling period, whereas both controller and actuator are
event-driven. The important modelling issue arising from (175) is that the actuation time instances
are not equidistant since the piecewise constant control action û(t) experiences a “jump” at the un-
certain time instance kh + τk. Hence (unless τk is constant) it is not in general possible to treat the
ensuing NCS in a standard sampled-data or “time–delayed” setting and a “hybrid” setup should be
used ([19]). Despite the “jump” nature of û(t), the exact discretization of (175) within a sampling
period is straightforward, describing the evolution of the state vector at the discrete time instances,
is given by

xk+1 = Φxk + Γ0(τk)ûk + Γ1(τk)ûk−1 (176)
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where Φ = exp(Ach) and

Γ0(τk) =

h−τk∫
0

exp(Acλ)Bcdλ

=
[

In 0̄T
]

exp
([

Ac Bc

0̄ 0

]
(h − τk)

) [
0̄T

1

]

Γ1(τk) = −Γ0(τk) +

h∫
0

exp(Acλ)Bcdλ (177)

The decomposition τk = τ◦+τk
∆

of the uncertain delay, with τ◦ denoting the user selected nominal
value, leads into a corresponding system decomposition. The matrices Γ0(τk), Γ1(τk) can thus be
decomposed into constant and known nominal parts Γ̄0

4
= Γ0(τ◦), Γ̄1

4
= Γ1(τ◦) and uncertain (though

bounded) parts ∆Γ0, ∆Γ1 which are related as ([17])

∆Γ0(τk, τ◦) = ∆Γ(τk, τ◦)Bc = −∆Γ1(τk, τ◦)
or [∆Γ0 ∆Γ1] = In∆Γ [Bc − Bc]

with ∆Γ(τk, τ◦) 4
=

h−τk∫
h−τ◦

exp(Acλ)dλ (178)

For τ◦ = τmin the “core uncertain matrix” ∆Γ(τk, τmin) in (178) is norm bounded by ([18])

δs = sup{σmax(∆Γ(τk)} ≤ max
τk∈[τmin,τmax]

∥∥∥∥∥∥∥∥∥
h−τk∫

h−τmin

eAcλdλ

∥∥∥∥∥∥∥∥∥
2

≤

h−τmin∫
h−τmax

e‖Ac‖2λdλ =

h−τmin∫
h−τmax

eσmax(Ac)λdλ

=
eσmax(Ac)(h−τmin) − eσmax(Ac)(h−τmax)

σmax(Ac)
= δ (τmin, τmax, h, Ac) . (179)

Remark 67 Any value δ ≥ δs can be used to bound σmax(∆Γ(τk)) from above. Of particular im-
portance is the δ(τmin, τmax, h, Ac)-value due to its ease of computation. As a special case, setting
τ◦ = τmin = 0, the previous bound becomes a function of τmax,

δ(0, τmax, h, Ac) =
eσmax(Ac)h − eσmax(Ac)(h−τmax)

σmax(Ac)
. (180)

It can be shown that the same expression (179) is also valid for the selection τ◦ = τmax. Lastly recall
that σmax(∆Γ(τk)) ≤ δ ⇔ ∆ΓT (τk)∆Γ(τk) ≤ δ2In.

Combining the discretized version of NCS in (176) with the decomposition of the uncertain
matrices Γ0(τk), Γ1(τk) presented in (178), can write

xk+1 = Φxk +
[
Γ̄0 + ∆Γ0

]
uk +

[
Γ̄1 + ∆Γ1

]
uk−1

= Φxk +
[
Γ̄0 + ∆ΓBc

]
uk +

[
Γ̄1 − ∆ΓBc

]
uk−1 (181)
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with Γ̄0, Γ̄1 signifying the nominal parts of Γ0(τk), Γ1(τk).
Notice that (181) is a special case of the generic uncertain dynamics (110)

xk+1 = (A + ∆A)xk + (B + ∆B)uk + (B1 + ∆B1)uk−h

in the previous chapter with

h∗ → 1
A → Φ

∆A → 0, Ea → 0
B → Γ̄0,

B1 → Γ̄1,

∆B → ∆ΓBc, ∆B1 → −∆ΓBc

Eb → Bc, Eh → −Bc

D → In

F → ∆Γ (182)

Associated with the uncertain open–loop system (181) is the cost function

J =

∞∑
k=0

[
xT

k Qxk + uT
k Ruk

]
(183)

with Q,R > 0 being symmetric and positive definite matrices of appropriate dimensions. Assuming
that the system state is available for feedback, the objective is the design of a memoryless state
feedback control law ûk = −Kxk, such that for any admissible uncertainty ∆Γ(τk) the resulting
closed–loop system is not only asymptotically stable but also guarantees the satisfaction of the bound
J ≤ J∗ with the positive (constant) scalar J∗ being independent of the uncertainties (see [6, 7]). The
rationale behind this last objective is to incorporate (transient) performance objectives into the design
procedure.For notation simplification ûk is hereafter replaced by uk.

Closing the loop in (176), (181) with uk = −Kxk, the closed–loop dynamics can be written as

xk+1 =
[
Φ − Γ0(τk)K

]
xk +

[
−Γ1(τk)K

]
xk−1

=
[
Φ − Γ̄0K − ∆Γ0K

]
xk +

[
−Γ̄1K − ∆Γ1K

]
xk−1

=
[
Φ − Γ̄0K − ∆ΓBcK

]
xk +

[
−Γ̄1 + ∆ΓBc

]
Kxk−1

4
= Acl(k)xk + Bcl(k)Kxk−1 (184)

with the obvious definitions for the uncertain closed–loop matrices Acl(k), Bcl(k) i.e. (Acl(k) =[
Φ − Γ̄0K − ∆ΓBcK

]
, Bcl(k) =

[
−Γ̄1 + ∆ΓBc

]
) and

Jcl =

∞∑
k=0

xT
k

[
Q + KT RK

]
xk (185)

11.2 Guaranteed Cost Control (GCC) Analysis for NCS - a sufficient condi-
tion

The following Theorem presents a sufficient condition for the existence of memoryless state feed-
back guaranteed cost control law for the uncertain networked system in (181).
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Theorem 68 The control law u∗k = −Kxk is a guaranteed cost controller if there exist symmetric
positive definite matrices P ∈ <n×n,T ∈ < such that for any admissible “core uncertain” matrix
∆Γ(τk) given in (178),(179) the following inequality holds:[

Π AT
clPBcl

∗ BT
clPBcl − T

]
< 0 (186)

with

Π
4
= AT

clPAcl − P + KT T K + Q + KT RK
4
= AT

clPAcl + Λ, (187)

and the obvious definition for the symmetric matrix Λ = ΛT , while Acl, Bcl have been defined in
(184). Moreover if (186) is true, the cost function is bound as J∗ ≤ λmax(UT PU)+λmax(UT KT T KU)
with U a given matrix depending on the initial conditions.

The Proof follows the same lines as the Proof of Theorem 45 with the correspondences shown
in 182 and the input delay h bounded by 1 i.e. 0 ≤ h ≤ h∗ = 1.

11.3 Synthesis of GCC for NCS (INCOMPLETE)
The sufficient condition in Theorem 68 will now be used for the synthesis of stabilizing Guaranteed
Cost Controllers. The synthesis procedure is stated below, for NCS as an LMI feasibility problem.
Lemma 5 will be used in the proof.

Theorem 69 For the uncertain system (181) and the cost function (183) there exist symmetric
positive-definite matrices P, T such that matrix inequality (186) holds for all admissible uncertain-
ties (i.e. for any admissible “core uncertain” matrix ∆Γ(τk) presented in (178),(179)) if and only
if there exist a positive scalar ε > 0, a matrix W ∈ <1×n and symmetric positive definite matrices
S = P−1 ∈ <n×n, N = T−1 ∈ < such that the following LMI is satisfied.



(−S + εIn) (ΦS − Γ̄0W) −Γ̄1N 0 0 0 0
∗ −S 0 −δ(BcW)T WT S T WT

∗ ∗ −N δNBT
c 0 0 0

∗ ∗ ∗ −εIn 0 0 0
∗ ∗ ∗ 0 −N 0 0
∗ ∗ ∗ 0 0 −Q−1 0
∗ ∗ ∗ ∗ ∗ ∗ −R−1


< 0. (188)

or (after a permutation)



(−S + εIn) 0 −Γ̄1N 0 0 (ΦS − Γ̄0W) 0
∗ −Q−1 0 0 WT S T WT

∗ ∗ −N δNBT
c 0 S 0

∗ ∗ ∗ −εIn 0 −δBcW 0
∗ ∗ ∗ ∗ −R−1 W 0
∗ ∗ ∗ ∗ ∗ −S WT

∗ ∗ ∗ ∗ ∗ ∗ −N


< 0. (189)

Furthermore, if matrix inequality (189) has a feasible solution in terms of the variables ε,W, S ,N,
then the state feedback control law uk = −WS −1xk is a guaranteed cost control law and the corre-
sponding closed–loop cost function satisfies J∗ ≤ 2λmax(UT S −1U).
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The Proof follows the same lines as the Proof of Theorem 46 with the input delay h bounded by
1 i.e. 0 ≤ h ≤ h∗ = 1, up to the point where the following synthesis LMI is derived



−S + εDDT AS + BW B1N 0 0 0 0
∗ −S 0 (EaS + EbW)T WT S WT

∗ ∗ −N NET
h 0 0 0

∗ ∗ ∗ −εI 0 0 0
∗ ∗ ∗ ∗ −N 0 0
∗ ∗ ∗ ∗ ∗ −Q−1 0
∗ ∗ ∗ ∗ ∗ ∗ −R−1


< 0.

Using the correspondences shown in 182, can write...
(Note: the sign differences are due to the control law u∗k = −Kxk used in [13, 14] )

11.4 Synthesis of Robust State Feedback Control for NCS (no GCC)
This section comes from our paper [20].The main result here is a synthesis procedure of a robustly
stabilizing SSF (a stabilizing gain K for all admissible τk ∈ [0, τs

max]) and is presented as Theorem 70.

Although this result is a special case of the more generic (“GCC”) LMI (188) in Theorem
69 the proof is presented “in a single step” i.e. without going through the stability analysis...

Starting again from (176),(177), the matrices Γ0(τk), Γ1(τk) can be decomposed into constant
and known nominal parts Γ◦0

4
= Γ0(τ◦), Γ◦1

4
= Γ1(τ◦) and uncertain (though bounded) parts ∆Γ0, ∆Γ1

related as in (178) and the discrete–time open loop NCS dynamics writes as in (181) i.e.

xk+1 = Φxk +
[
Γ◦0 + ∆Γ0

]
uk +

[
Γ◦1 + ∆Γ1

]
uk−1 .

...the “core uncertain matrix” ∆Γ(τk) in (178) is norm bounded and for the selection τ◦ = 0 this
bound can be approximated as already presented in (180) [21]

δs = sup{σmax(∆Γ(τk)} ≤
eσmax(Ach) − eσmax(Ac)(h−τmax)

σmax(Ac)
= δ (τmax, h, Ac) .

Closing the loop in (176),(181) via a discrete–time static state feedback law (ûk = −Kxk, ûk−1 =

−Kxk−1), the closed–loop dynamics becomes (see (184))

xk+1 =
[
Φ − Γ0(τk)K

]
xk +

[
−Γ1(τk)K

]
xk−1

=
[
Φ − Γ◦0K − ∆ΓBcK

]
xk +

[
−Γ◦1 + ∆ΓBc

]
Kxk−1

4
= Acl(k)xk + Bcl(k)Kxk−1

with the obvious definitions for the uncertain closed–loop matrices Acl(k), Bcl(k).

Theorem 70 For the uncertain system (181) and for all admissible uncertainties, if there exist a
positive scalar ε > 0, a matrix W ∈ <1×n and symmetric positive definite matrices S ∈ <n×n, N ∈ <
such that the following LMI has a feasible solution,

(−S + εIn) (ΦS − Γ◦0W) −Γ◦1N 0 0
∗ −S 0 −δ(BcW)T WT

∗ ∗ −N δNBT
c 0

∗ ∗ ∗ −εIn 0
∗ ∗ ∗ ∗ −N

 < 0. (190)
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then the state feedback control law uk = −WS −1xk = −Kxk is a “robustly stabilizing” control
law for all admissible, arbitrary time–varying uncertainties ∆Γ(τk) presented in (178),(180), and
arbitrary time–varying delays τk ∈ [0, τs

max], where τs
max not necessarily related to τmax from the

previous paragraphs.

Proof: Defining the augmented state vector ξ̃k
4
=

[
xk

Kxk−1

]
∈ <(n+1) and a candidate Lyapunov

function

Vk = V(xk, xk−1) = xT
k P̃xk + xT

k−1KT T Kxk−1,= ξ̃T
k

[
P̃ 0
0 T

]
ξ̃k, (191)

with P̃, T > 0 being symmetric and positive definite matrices of appropriate dimensions (P̃ ∈ <n×n),

and noting that the ξ̃k dynamics obey ξ̃k+1 =

[
Acl Bcl

K 0

]
ξ̃k, the forward difference ∆Vk along the

trajectories of the closed-loop system in (184), can be expressed after some calculations as

∆Vk = ξ̃T
k

[
AT

clP̃Acl + Λ AT
clP̃Bcl

∗ BT
clP̃Bcl − T

]
ξ̃k (192)

where “∗” induces symmetry as usual in the LMI literature and the symmetric matrix Λ defined as
Λ = −P̃ + KT T K = ΛT . Using Schur complements the demand for ∆Vk < 0 is equivalent to

[
Λ 0
0 −T

]
+

[
AT

cl
BT

cl

]
P̃

[
Acl Bcl

]
< 0⇔

 −P̃−1 Acl Bcl

AT
cl Λ 0

BT
H 0 −T

 < 0⇔

 −P̃−1 Φ − Γ◦0K −Γ◦1
(Φ − Γ◦0K)T Λ 0

(−Γ◦1)T 0 −T

 +

 In

0
0

 ∆Γ(τk)
[

0 (−BcK) Bc

]
+

 0
(−BcK)T

(Bc)T

 ∆ΓT (τk)
[

In 0 0
]
< 0 (193)

where the defining expressions of the uncertain matrices Acl, Bcl from (184) have been used. Using
the computable norm bound δ of the “core uncertain matrix” ∆Γ(τk) (see (180) and ∆ΓT (τk)∆Γ(τk) ≤
δ2In), Lemma 5 is now invoked to transform (193) it into the following equivalent matrix inequality
where ε > 0 −P̃−1 + εIn Φ − Γ◦0K −Γ◦1

(Φ − Γ◦0K)T Λ 0
(−Γ◦1)T 0 −T

 +
1
ε

 0
(−δBcK)T

(δBc)T

 [ 0 − δBcK δBc

]
< 0

which by Schur Complement is equivalent to
−P̃−1 + εIn Φ − Γ◦0K −Γ◦1 0

∗ Λ 0 (−δBcK)T

∗ ∗ −T (δBc)T

∗ ∗ ∗ −εIn

 < 0 (194)

Pre- and post- multiplying both sides of (194)by the nonsingular, symmetric block–diagonal matrix
diag(In, P̃−1, T−1, In), a congruent transformation, while introducing S = P̃−1, N = T−1, W =

L. Dritsas PhD 2020 90



L. Dritsa’s Notes on H∞, Robust Control, LMIs

KP̃−1 = KS , (194) is transformed into:
−S + εI ΦS − Γ◦0W −Γ◦1N 0
∗ S ΛS 0 −δ(BcW)T

∗ ∗ −N δN(Bc)T

∗ ∗ ∗ −εI

 < 0 (195)

Recalling the definition Λ = −P̃−1 + KT T K = ΛT and the fact that S = S T , the (2, 2)–element of the
last inequality is equal to

S ΛS = P̃−1[−P̃ + KT T K]P̃−1 = −S + WT N−1W

and hence (195) writes as
−S + εI ΦS − Γ◦0W −Γ◦1N 0
∗ −S 0 −δ(BcW)T

∗ ∗ −N δN(Bc)T

∗ ∗ ∗ −εI

 +


0

WT

0
0

 N−1
[

0 W 0 0
]
< 0

which by Schur complement is equivalent to (190) which is an LMI in terms of the variables
ε,W, S ,N. This completes the proof of the theorem. �
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12 An Alternative GCC Analysis & Synthesis for uncertain DT
systems with (only) State Delay (Guan et.al. IEE 1999)

Presentation is primarily based on [6] i.e. the paper by X. Guan, Z. Lin and G. Duan “Robust guaran-
teed cost control for discrete-time, uncertain systems with delay”, IEE Proc.-Control Theory Appl.,
vol. 146, November 1999, p.598–602.

12.1 Open–Loop GCC Analysis for systems with (only) State Delay

Open–loop DT system with (only) state delay and uncertain dynamics

xk+1 = (A + ∆A)xk + (A1 + ∆A1)xk−d + (B + ∆B)uk
4
= Ãxk + Ã1xk−d + B̃uk

xk = φ(k), − d ≤ k ≤ 0 (196)

with x ∈ <n and u ∈ <m and d being a positive integer (?? unknown constant ??) integer (delay
units in the state).

The system uncertainties are norm–bounded

∆A = H1F1E1, ∆A1 = H2F2E2 (197)

with the unknown (time-varying) matrices Fi satisfying FT
i Fi ≤ I, i = 1, 2.

We shall need the matrix inequality presented in Lemma (11) (inequality (10))

Lemma 71 Let A,M,N,∆ be real matrices of appropriate dimensions with ‖∆‖2 < 1. Then for
P > 0 and scalar ε > 0 satisfying εI − MT PM > 0,

(A + M∆N)T P(A + M∆N) ≤ AT [P−1 − ε−1MMT ]−1A + εNT N (198)

and/or the alternative formulation of Lemma (12).

Lemma 72 Let A,M,N,∆ be real matrices of appropriate dimensions with ‖∆‖2 < 1. Then for
P > 0 and scalar ε > 0 satisfying P − εMMT > 0

(A + M∆M)T P−1(A + M∆N) ≤ AT [P − εMMT ]−1A +
1
ε

NT N (199)

and also the following Lemma

Lemma 73 For any z, y ∈ <n and for any positive definite ∈ <n×n

2zT Py ≤ zT Pz + yT Py (200)

Associated with the uncertain unforced open–loop system (196) is the cost function

J =

∞∑
k=0

[
xT

k Qxk

]
(201)
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12.2 Sufficient condition for Robust GCC Stability of the Open Loop system
THE FOLLOWING THEOREM (FORMULATED WITH < SIGN) STATES THE SUFFICIENT
CONDITION FOR...

Theorem 74 A matrix P > 0 is a “quadratic cost matrix” for the unforced (open–loop) system (196)
and the cost function (201) if there exist parameters εi > 0, i = 1, 2 such that the following LMI is
satisfied  −

1
2 P + 1

2 Q + 1
ε
ET

1 E1 + 1
ε
ET

2 E2 AT AT
1

A −P−1 + ε1H1HT
1 0

A1 0 −P−1 + ε2H2HT
2

 < 0 (202)

Proof 75 Defining

• the “positive with respect to xk” function (it is same one used in (139) Theorem 51 )

V tot
k = V1

k + V2
k = xT

k Pxk +

d∑
i=1

xT
k−iPd xk−i (203)

with P, Pd > 0 being SPDef matrices of appropriate dimensions 0 < P, Pd ∈ <
n×n,

• the augmented state vector ξk
4
=

[
xk

xk−d

]
∈ <2n which allows to write the open-loop dynamics

(196) as
xk+1 = Ãxk + Ã1xk−d =

[
Ã Ã1

]
ξk

the forward difference ∆Vk = V tot
k+1 − V tot

k along the trajectories of (196) can be expressed in
terms of ξk as follows:

∆V1
k –term:

V1
k = xT

k Pxk can be written as ξT
k

(
P 0
0 0

)
ξk

Using xk+1 = [AC AD] ξk, the V1
k+1 term writes as

V1
k+1 = xT

k+1Pxk+1 = ξT
k

[
Ã Ã1

]T
P

[
Ã Ã1

]
ξk

= ξT
k

[
ÃT PÃ ÃT PÃ1

∗ Ã1
T PÃ1

]
ξk

and

∆V1
k = V1

k+1 − V1
k = ξT

k

[
ÃT PÃ − P ÃT PÃ1

∗ Ã1
T PÃ1

]
ξk (204)

∆V2
k –term:

∆V2
k =

 d∑
i=1

xT
k+1−iPd xk+1−i

 −
 d∑

i=1

xT
k−iPd xk−i


= xT

k Pd xk − xT
k−dPd xk−d

= ξT
k

(
Pd 0
0 −Pd

)
ξk (205)
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Combining (205),(204) and defining

Π1
4
= ÃT PÃ − P + Pd + Q 4

= ÃT PÃ + Λ (206)

(?? see also the definition (137) for the forced version ??)
we have

∆V tot
k = ∆V1

k + ∆V2
k

= ξT
k

[
ÃT PÃ − P + Pd ÃT PÃ1

∗ Ã1
T PÃ1 − Pd

]
ξk

4
= ξT

k

[
Π1 − Q Π2
∗ Π3

]
ξk

Following the same arguments as in sections 10.2,10.2.1, we have the sufficient condition that
the negative definiteness of the uncertain open–loop matrix[

Π1 Π2
∗ Π3

]
< 0 (207)

implies that the “wish” for ∆V tot
k < 0 is indeed satisfied since (in that case)

∆V tot
k = ξT

k

([
Π1 Π2
∗ Π3

]
−

[
Q 0
∗ 0

])
ξk

≤ −xT
k Qxk ≤ −λmin(Q)‖xk‖

2 < 0.

and

Jol =

∞∑
k=0

xT
k Qxk ≤ V tot

0 = xT
0 Px0 +

d∑
i=1

xT
−iPd x−i

4
= J∗ (208)

i.e. Stability with “guaranteed cost”.

Now the sufficient condition (207) W1
4
= ξT

k

[
Π1 Π2
∗ Π3

]
ξk < 0 using Lemmas (71), (72), (73)

and the definitions of Π1,Π2,Π3 from (206)

Π1
4
= ÃT PÃ − P + Pd + Q 4

= ÃT PÃ + Λ

Π2
4
= ÃT PÃ1

Π3
4
= Ã1

T PÃ1 − Pd

writes as

W1
4
=

[
xk

xk−d

]T [
Π1 Π2
∗ Π3

] [
xk

xk−d

]
= xT

k Π1xk + 2xT
k Π2xk−d + xT

k−dΠ3xk−d < 0

Bounding procedure for the three terms of W1.

[1] The Π1 term: Using Lemma (71) on the Π1 term

Π1
4
= ÃT PÃ − P + Pd + Q 4

= (A + H1F1E1)T P(A + H1F1E1) + (Pd − P + Q)

≤

[
AT

(
P−1 − ε1H1HT

1

)−1
A +

1
ε1

ET
1 E1

]
+ (Pd − P + Q)
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hence

xT
k Π1xk ≤ xT

k

([
AT

(
P−1 − ε1H1HT

1

)−1
A +

1
ε1

ET
1 E1

]
+ (Pd − P + Q)

)
xk

[2] The Π2 term: Using Lemma (73) i.e. 2zT Py ≤ zT Pz + yT Py on the expression 2xT
k (A +

H1F1E1)T P(A1 + H2F2E2)xk−d ,
and subsequently Lemma (71) on the derived expressions (A + H1F1E1)P(A + H1F1E1) and

(A1 + H2F2E2)P(A1 + H2F2E2) below, can bound the 2xT
k Π2xk−d term as

2xT
k Π2xk−d = 2xT

k (ÃT PÃ1)xk−d = 2xT
k (A + H1F1E1)T P(A1 + H2F2E2)xk−d

≤ xT
k (A + H1F1E1)T P(A + H1F1E1)xk + xT

k−d(A1 + H2F2E2)T P(A1 + H2F2E2)xk−d

≤ xT
k

[
AT

(
P−1 − ε1H1HT

1

)−1
A +

1
ε1

ET
1 E1

]
xk + xT

k−d

[
AT

1

(
P−1 − ε2H2HT

2

)−1
A1 +

1
ε1

ET
2 E2

]
xk−d

[3] The Π3 term: Using Lemma (71) on Π3

Π3
4
= Ã1

T PÃ1 − Pd
4
= (A1 + H2F2E2)T P(A1 + H2F2E2) − Pd

≤

[
AT

1

(
P−1 − ε2H2HT

2

)−1
A1 +

1
ε1

ET
2 E2

]
− Pd

hence

xT
k−dΠ3xk−d ≤ xT

k−d

([
AT

1

(
P−1 − ε2H2HT

2

)−1
A1 +

1
ε1

ET
2 E2

]
− Pd

)
xk−d

Combining results can bound W1 as

W1 ≤ xT
k

(
2
[
AT

(
P−1 − ε1H1HT

1

)−1
A +

1
ε1

ET
1 E1

]
+ (Pd − P + Q)

)
xk

+xT
k−d

(
2
[
AT

1

(
P−1 − ε2H2HT

2

)−1
A1 +

1
ε1

ET
2 E2

]
− Pd

)
xk−d (209)

HERE COMES THE LIGHT !!! Instead of keep treating Pd as a matrix variable for a future
LMI, select

Pd = 2
[
AT

1

(
P−1 − ε2H2HT

2

)−1
A1 +

1
ε1

ET
2 E2

]
(210)

so as to eliminate the last term in (209). Hence the “wish” for W1 < 0 using the special selection of
Pd in (210) writes as

W1 ≤ xT
k

(
2
[
AT

(
P−1 − ε1H1HT

1

)−1
A +

1
ε1

ET
1 E1

]
+ 2

[
AT

1

(
P−1 − ε2H2HT

2

)−1
A1 +

1
ε1

ET
2 E2

]
+ (Q − P)

)
xk

and the wish for negative definiteness of the matrix

AT
(
P−1 − ε1H1HT

1

)−1
A + AT

1

(
P−1 − ε2H2HT

2

)−1
A1 +

1
ε1

ET
1 E1 +

1
ε1

ET
2 E2 +

1
2

(Q − P) < 0
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is by Schur Complement equivalent to AT
1

(
P−1 − ε2H2HT

2

)−1
A1 + 1

ε1
ET

1 E1 + 1
ε1

ET
2 E2 + 1

2 (Q − P) AT

A −
(
P−1 − ε1H1HT

1

)  < 0⇔

 1
ε1

ET
1 E1 + 1

ε1
ET

2 E2 + 1
2 (Q − P) AT

A −
(
P−1 − ε1H1HT

1

)  +[
AT

1
0

] (
P−1 − ε2H2HT

2

)−1 [
A1 0

]
< 0⇔

 −
1
2 P + 1

2 Q + 1
ε
ET

1 E1 + 1
ε
ET

2 E2 AT AT
1

A −P−1 + ε1H1HT
1 0

A1 0 −P−1 + ε2H2HT
2

 < 0

which is the LMI appearing in Theorem (74).
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13 D-Stability & LMI Regions (INCOMPLETE)

13.1 D-Stability and Pole Placement in LMI regions
Material for this section comes mainly from [22, 23, 24, 25, 1, 26] The seminal papers are: “Pole
Assignment for Uncertain Systems in a Specified Disk by Output Feedback” by G. Garcia and J.
Bernussou [23, 24, 27], and the papers by M. Chilali, P. Gahinet and P. Apkarian [9, 25] (“Robust
Pole Placement in LMI Regions”). See also the Lecture notes by Carsten Scherer [1] “LMI’s in
Controller Analysis and Synthesis”, available at
http://www.dcsc.tudelft.nl/˜cscherer/lmi.html

Notation:

• ⊗ = Kronecker product

• C = the complex domain

Definition 76 [1] For a real symmetric 2m × 2m matrix P the set of complex numbers

LP ,

(
z ∈ C :

(
I
zI

)∗
P

(
I
zI

)
< 0

)
(205)

is called an LMI region (∗ signifies conjugate transpose).

Definition 77 [9, 25] An LMI region is any subset D of the complex plane that can be defined as

D = {z ∈ C : L + zM + z̄MT < 0} (206)

where L,M are real matrices such that L = LT . The matrix–valued function fD = L + zM + z̄MT is
called the characteristic function of D.

Remark 78 ?? LDRI QUESTION ?? : (205, 206) are equivalent provided that P =

(
L M

MT 0

)

Example 79 Disk centered at (-q,0) with radius r as LMI Region

|z + q|2 < r2 ⇔ (z + q)(z̄ + q) − r2 < 0⇔ −r + (z + q)(r−1)(z̄ + q) < 0

⇔

(
−r z + q

z̄ + q −r

)
< 0⇔

(
−r q
q −r

)
+ z

(
1 0
0 0

)
+ z̄

(
0 0
1 0

)
< 0

or Pdisc =

(
−r2 0
0 1

)
according to Definition (205).

Subcase: Disk centered at (0, 0) with radius r, writes as zz̄ < r2.

Example 80 Half-plane: Re(z) < α ⇔ z + z̄ − 2α < 0 or Phal f plane =

(
−2α 1

1 0

)
according to

Definition (205).

Example 81 Sector: Re(z)tan(φ) < −|Im(z)| or Psector =


0 0 sin(φ) cos(φ)
0 0 −cos(φ) sin(φ)
∗ ∗ 0 0
∗ ∗ 0 0

 according to

Definition (205).
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Remark 82 [1] The intersection of finitely many LMI regions is an LMI region. (Can hence de-
scribe quite general subsets of C. Used later for closed-loop pole-placement with LMI techniques.)

Proof follows from usual stacking property of LMI’s:

(
I
zI

)∗ ( Q1 S 1
S T

1 R1

) (
I
zI

)
< 0,

(
I
zI

)∗ ( Q2 S 2
S T

2 R2

) (
I
zI

)
< 0

if and only if


I 0
0 I
zI 0
0 zI


∗ 

Q1 0 S 1 0
0 Q2 0 S 2

S T
1 0 R1 0

0 S T
2 0 R2




I 0
0 I
zI 0
0 zI

 (207)

General Stability Characterization in terms of LMI regions [1]

Theorem 83 [1] All eigenvalues of A ∈ Rn×n are contained in the LMI region(
I
zI

)∗ ( Q S
S T R

) (
I
zI

)
< 0

if and only if there exists a K > 0 such that

(
I

A ⊗ I

)∗ ( K ⊗ Q K ⊗ S
K ⊗ S T K ⊗ R

) (
I

A ⊗ I

)
< 0 (208)

Corollary 84 [1]
Discrete-Time versus Continuous-Time Stability Criteria in terms of LMI regions.

{ The unit disk } { The open left half-plane } are LMI regions:

(
1
z

)∗ (
−1 0
0 1

) (
1
zI

)
< 0,

(
1
z

)∗ ( 0 1
1 0

) (
1
zI

)
< 0 respectively

{ A in xk+1 = Axk is Schur matrix } { A in ẋ(t) = Ax(t) is Hurwitz matrix } if and only if there
exists a K > 0 such that(

I
A

)∗ (
−K 0
0 K

) (
I
A

)
< 0,

(
I
A

)∗ ( 0 K
K 0

) (
I
A

)
< 0 respectively

13.2 A special case: Disk Stability & SSF Synthesis for Disc Stability
Objective: Given the “original” CT system

ΣOCT : ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t) (209)

design a SSF u(t) = Kx(t) so that the closed–loop poles lie within a prespecified disc C(d, r) i.e.
a disk centered at α = −(d + r) < 0 with radius r as shown in the Figure 13 below.
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Remark 85 NOTE CAREFULLY THE MEANING OF THE SYMBOLS d, r, α = −(d + r) < 0
USED IN THIS PRESENTATION...MANY MISUNDERSTANDINGS MAY OCCUR DUE TO
THE FACT THAT IN SOME PAPERS THE DISK CENTER a IS POSITIVE AND NEGATIVE
IN OTHERS...e.g ELSEWHERE CAN MEET THE NOTATION C(−α, r) WHERE α HAS DIF-
FERENT MEANING

Figure 13: Disc-stability notion: the notation C(d, r) signifies a disk centered at α = −(d + r) < 0
with radius r(adapted from [26])

The next two Lemmas will be used in the proof of the fundamental Theorem 88

Lemma 86 (Given α, r ∈ R), the mapping z = s−α
r ⇔ s = rz + α = r(z + α

r ) maps a disk C(d, r) in
the “s–Domain” (Laplace) into the unit circle C(0, 1) in the “z–Domain”

Proof of Lemma 86: A disk in the complex “s-domain” centered at α = −(d + r) < 0 with radius r
(see Figure 13) is expressed as |s − α| < |r| = r ⇔ | s−αr | < 1⇔ |z| < 1 by definition of z.

Lemma 87 If λr is an eigenvalue of matrix Ar ,
1
r (A − αI) then λ = rλr + α is an eigenvalue of

matrix A.

Proof of Lemma 87: Assume λr is an eigenvalue of matrix Ar ,
1
r (A−αI) and xr the corresponding

eigenvector. Then Ar xr = λr xr or 1
r (A − αI)xr = λr xr ⇔ Axr = (rλr + α)xr. Setting λ , rλr + α it is

obvious that λ = rλr + α is an eigenvalue of matrix A.

A fundamental result (necessary and sufficient condition) is the following [22, 23, 24, 27]

Theorem 88 The Disk stability/stabilization of the CT system ΣOCT ẋ(t) = Ax(t) + Bu(t) within
C(d, r), is equivalent with the stability/stabilization of the following “Virtual Discrete Time System”:

ΣVDT : xr[k + 1] = Ar xr[k] + Brur[k]
yr[k] = Cr xr[k] + Drur[k] (210)

with

Ar ,
1
r

(A − αI), Br ,
1
√

r
B, Cr ,

1
√

r
C, Dr , D (211)
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Moreover if Kr is a stabilizing feedback gain for the “Virtual Discrete Time System” ΣVDT in
(210) placing the eigenvalues of the virtual closed–loop matrix Acl

r = Ar + BrKr inside the unit disk
C(0, 1), then the feedback gain

K =
√

rKr (212)

places the eigenvalues of the original closed–loop matrix Acl = A + BK inside the disk C(d, r).

Sketch of Proof for Theorem 88: The proof regarding stability is a direct consequence of the
two previous Lemmas. Due to the specific structure of Ar ,

1
r (A − αI) in (211) then, according to

Lemma 87, the eigenvalues λ of A satisfy λ = rλr + α. If all eigenvalues λr of Ar lie within the unit
circle, i.e. |λr | < 1, that would be equivalent with the following constraint for the eigenvalues λ of
A: λ = rλr + α⇒ |λ− α| = r|λr | < r, since r > 0 and |λr | < 1. The inequality |λ− α| < r means that
λ lies within a disk of radius r centered at α.

Regarding stabilization: Assuming now that Kr is a stabilizing feedback gain for the “Virtual
Discrete Time System” ΣVDT in (210) means that the control law ur[k] = Kr xr places the eigs of the
closed–loop matrix Acl

r = Ar + BrKr inside the unit circle. Using (211),(212) can then write:

Acl
r = Ar + BrKr =

1
r

(A − αI) + (
1
√

r
B)(

1
√

r
K)

=

(
1
r

)
[A + BK − αI] =

(
1
r

) [
Acl − αI

]
which is a relation between Acl

r , Acl completely analogous to the relation Ar ,
1
r (A − αI) assumed

for the open–loop matrices. Hence their eigenvalues satisfy again the relation λcl = rλcl
r + α.

Conclusion: If then Kr is designed so that all eigenvalues λcl
r of Acl

r = Ar + BrKr lie within the
unit circle (“stabilization of the Virtual Discrete Time System ΣVDT ”) this is equivalent with placing
the eigenvalues λcl of Acl = A + BK inside a disk of radius r centered at α.

Remark 89 With s, z satisfying z = s−α
r (Lemma 86) and {A, B,C,D}, {Ar, Br,Cr,Dr} satisfying

(211), can show by direct substitution that the transfer functions of the two systems ΣOCT : {A, B,C,D}
and ΣVDT : {Ar, Br,Cr,Dr} are “equal” (in form). Indeed,

GOCT (s) = C(sI − A)−1B + D = C
[
r(z +

α

r
)I − r

1
r

A
]−1

B + D

= C
[
r
[
(z +

α

r
)I −

1
r

A
]]−1

B + D

=
1
r

C
[
(z +

α

r
)I −

1
r

A
]−1

B + D

= (
1
√

r
)C

[
zI −

1
r

(A − αI)
]−1

(
1
√

r
)B + D

, Cr [zI − Ar]−1 Br + Dr , GVDT (z)

L. Dritsas PhD 2020 100



L. Dritsa’s Notes on H∞, Robust Control, LMIs

13.3 Algorithm & MATLAB code11 for Disc Stabilization via SSF
Algorithm

1. Given the CT open loop system {A, B,C,D} and the desired Disk C(d, r) with d, r positive real
numbers

2. compute α = −(d+r) < 0 and the virtual system’s matrices {Ar, Br,Cr,Dr} from (211) matrices

3. design a stabilizing control law ur[k] = Kr xr for the “Virtual Discrete Time System” ΣVDT in
(210) (can use either “lqr” or “place”)

4. then the control law u = Kx with gain K =
√

rKr places the eigenvalues of the CT closed loop
system within the disk C(d, r)

MATLAB code

clc; clear all; close all %

disp(’DRITSAS 18-June-08 Revisited 17Jan2011 ’)

disp(’===================================================================’)

disp(’ pick a DELAY-FREE SYSTEM in CTRB_CANONICAL form ’)

disp(’===================================================================’)

[A,B,C,D,sysnum,xinit,h]= pick2ndOrderTs_CTRB_CANONICAL % pick2ndOrderTs

x0=[1 ; 100 ] % xinit

%------------- SS OF THE CT SYSTEM

open_orig_ctsys = ss(A, B, C, D);

%------------- VERIFICATION1 ----------------------------

[Plantnum,Plantden]=ss2tf(A, B, C, D);

disp(’VERIFICATION1:original CT_PLANT_TF= ’);

Ptf=tf(Plantnum,Plantden) disp(’open loop eig/poles’)

disp(’open--loop eigs’); eig(A) %

disp(’open--loop poles’);pole(Ptf)

%%--------- DIMENSIONS --------------------------------

% nx = STATE-DIM, nu =INPUT-DIM OF THE ORIGINAL CT SYSTEM

%%------------------------------------------------------

nx = max(size(A)); nu = size(B) * [0 ; 1]; [nx nx]=size(A);

%-----------------------------------------------------------

% CONTROLLABILITY CHECK of (A,B)

%-----------------------------------------------------------

fprintf(’\n\n’); disp(’CONTROLLABILITY CHECK of (Ac,Bc)’)

if (rank(ctrb(A,B)) ˜= nx)

CONTROLLABILITY_CT =0

error(’LDRI1: System (Ac,Bc)is NOT Controllable...Good Bye!!!!’);

else

CONTROLLABILITY_CT =1
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disp(’LDRI1: System (Ac,Bc) is Controllable...Proceed’);

end

%----------------- D-STABILITY Specifications -----------------%%

disp(’ D-STABILITY ’) %

disp(’alpha_ct = DESIRED Center of DISC for the closed CT sys

--> must be a negative real number ’)%

disp(’radius_ct = DESIRED radius of DISC --> must be a

positive real number ’) %

alpha_ct = -5.0 radius_ct = 1.0

disp(’===================================================================’)

disp(’ VIRTUAL DT SYS = {Ar,Br,Cr,Dr} to be stabilized via

DLQR or PLACE ’) disp(’Ar = ( A - alpha*eye(nx) )/r is the

VIRTUAL DT OPEN-LOOP matrix’)

disp(’===================================================================’)

Ar = (A - alpha_ct*eye(nx) )/radius_ct; %

Br = B/sqrt(radius_ct) ;%

Cr = C/sqrt(radius_ct) ; %

Dr = D/radius_ct ;

disp(’===================================================================’)

disp(’ DLQR COMPUTATIONS for the VIRTUAL DT-SYS ’)

disp(’===================================================================’)

fprintf(’\n\n’); disp(’*======== semiarbitrary DLQR MATRICES for

the VIRTUAL DT-SYS ==========*’)

Qd = 1*eye(nx); Rd=1*eye(nu); %---- WEIGHT MATRICES PLAY WITH THEM !!!

disp(’ *** COMPUTE DLQR for the VIRTUAL DT-SYS = Ar,Br,Cr ***’)%

[Kr, Pr, eigcl_r] = dlqr(Ar, Br, Qd, Rd);

%------ SHOW P(=RICCATI) & K (=LQR GAIN)

% disp(’P=’) ; disp(P); disp(’Klqr=’); disp(Klqr)

disp(’ *** Stability of the (virtual) DT closed-loop matrix

"Acl_r=Ar - Br*Kr" Guaranteed by DLQR ***’)

disp(’===================================================================’)

disp(’ Now Translate the "virtual" results back into the Original

CT system ’)

disp(’===================================================================’)

disp(’ "Korig" = Gain K to be used on the ORIGINAL CT SYS -> Korig = sqrt(r)*Kr’) %

Korig = sqrt(radius_ct)*Kr

%----- SS of CT CLOSED LOOP SYSTEM

Acl_orig_ctsys = A-B*Korig;

Bcl_orig_ctsys =B; % if u=-Kx + r

Ccl_orig_ctsys =C-D*Korig ; % if u=-Kx + r

Dcl=D; closed_orig_ctsys = ss(Acl_orig_ctsys, Bcl_orig_ctsys,

Ccl_orig_ctsys,Dcl);

disp(’eig(A-B*Korig) = ’); disp(eig( Acl_orig_ctsys ))
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disp(’display eigcl: check whether abs( eigcl(i) - alpha_ct ) <

radius_ct ’) eigcl = eig( Acl_orig_ctsys ); fprintf(’\n\n’);

disp(’YOUR CHOICES WERE...’) alpha_ct radius_ct disp(’ ***

Verify that ||eigcl - alpha_ct|| < radius_ct *** ...Press a

key... ’); pause

for i=1:2

disp(’check that the norm: ||eigcl - alpha_ct|| < radius_ct ’)

if abs( eigcl(i) - alpha_ct ) < radius_ct

i

disp(’SUCCESS: eigcl_ct - alpha_ct < radius_ct ’)

norm( eigcl(i) - alpha_ct )

disp(’ *** Press any key *** ’); pause

else

error(’FAILURE IN D STAB !!!’)

end

end

disp(’ pzmap... ’) %

fig=10; figure(fig);fig=fig+1; %

sgrid ; hold on ; pzmap( closed_orig_ctsys ) ; hold off %

figure(fig);fig=fig+1; initial(open_orig_ctsys,closed_orig_ctsys,x0) % Compare ZIR

fprintf(’\n\n’);

disp(’===================================================================’)

disp(’ Disc-Stab for DISCRETE TIME SYS ’)

disp(’===================================================================’)

disp(’===================================================================’)

disp(’ Discretize the orig CT-sys with Ts= 1.0 ’)

disp(’===================================================================’)

Ts= 1.0 ; % Ts=1.333

%------- CREATE DT-SS ---------------%%

dtss_open = c2d(open_orig_ctsys, Ts, ’zoh’) ;

%------- DT STATE SPACE DYNAMICS (Ad, Bd, Cd, Dd) ---------------%%

[Ad,Bd,Cd,Dd,Ts]=ssdata(dtss_open) ;

fprintf(’\n\n’);

disp(’===================================================================’)

disp(’ Check Stability/Controllability of the Discretized DT-sys’)

disp(’===================================================================’)

disp(’DT open loop eig/poles: eig(Ad)=’); eig(Ad)%

if ldri_check_dt_eigs(Ad) ==1

OPEN_LOOP_STAB_DT=1

disp(’*** Ad = PHI =OPEN-LOOP SYSTEM-MATRIX is SCHUR STABLE’);

else

OPEN_LOOP_STAB_DT=0

disp(’*** Ad = OPEN-LOOP SYSTEM-MATRIX is UNSTABLE !!!’);

%error(’Ad = PHI =Delay-Free-SYSTEM-MATRIX is UNSTABLE ’)
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end

%-------

if (rank(ctrb(Ad,Bd)) ˜= nx)

CONTROLLABILITY_DT =0

error(’LDRI1: System (Ad,Bd)is NOT Controllable...Good Bye!!!!’);

else

CONTROLLABILITY_DT =1

disp(’LDRI1: System (Ad,Bd) is Controllable...Proceed’);

end

%----------------- D-STABILITY Specifications -----------------%

disp(’ Disc-STABILITY = D(a,r) WITHIN THE UNIT CIRCLE ’) %

disp(’alpha_dt = 0 = DESIRED Center of DISC for the closed DT sys ’) %

disp(’radius_dt = 0.5 = DESIRED radius of DISC --> must be a

positive real number ’)%

alpha_dt = 0.0 %

radius_dt = 0.5

disp(’===================================================================’)

disp(’ VIRTUAL DT SYS = {Adr,Bdr,Cdr,Ddr} to be stabilized via DLQR or PLACE ’) %

disp(’Adr = (1/radius_dt)*(Ad - alpha_dt*eye(nx)) is the

transformed Virtual OPEN-LOOP matrix’)

disp(’===================================================================’)

Adr = (1/radius_dt)*(Ad - alpha_dt*eye(nx)); %

Bdr = Bd/sqrt(radius_dt) ; %

Cdr = Cd/sqrt(radius_dt) ; Ddr = Dd/radius_dt;

disp(’===================================================================’)

disp(’ DLQR COMPUTATIONS for the VIRTUAL DT-SYS{Adr,Bdr,Cdr,Ddr}

with the same semiarbitrary (Qd,Rd) matrices used for CT (this is

a legal option) ’)

disp(’===================================================================’)

fprintf(’\n\n’); %

disp(’*== DLQR MATRICES for the VIRTUAL DT-SYS ==*’) %

[Kdr, Pdr, eigcl_dr] = dlqr(Adr, Bdr, Qd, Rd); %

disp(’ *** Stability of the (virtual) DT closed-loop matrix

"Acl_dr = Adr - Bdr*Kdr" Guaranteed by DLQR ***’) %

Acl_dr = Adr - Bdr*Kdr; %

disp(’eig( Adr - Bdr*Kdr )’); disp(eig( Ar - Br*Kr ))

disp(’===================================================================’)

disp(’ Now Translate the "virtual" results back into the Original

DT system ’)

disp(’===================================================================’)

disp(’ "Korig_dt" = Gain K to be used on the ORIGINAL DT SYS

--> Korig_dt = sqrt( radius_dt )*Kdr ’)%

Korig_dt = sqrt(radius_dt)*Kdr

%----- SS of DT CLOSED LOOP SYSTEM

Acl_orig_dtsys = Ad-Bd*Korig_dt;

Bcl_orig_dtsys =Bd; % if u=-Kx + r
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Ccl_orig_dtsys =Cd-Dd*Korig_dt ; % if u=-Kx + r

Dcl=Dd; %

closed_orig_dtsys = ss(Acl_orig_dtsys, Bcl_orig_dtsys,

Ccl_orig_dtsys,Dcl, Ts); %

disp(’eig(Ad-Bd*Korig_dt) = ’); %

disp(eig( Acl_orig_dtsys )) %

eigcl_dt = eig( Acl_orig_dtsys );

disp(’ *** Verify that ||eigcl_dt - alpha_dt|| < radius_dt ’);

for i=1:2

disp(’check that the norm: ||eigcl_dt - alpha_dt|| < radius_dt ’)

if abs( eigcl_dt(i) - alpha_dt ) < radius_dt

i

disp(’SUCCESS: eigcl - alpha < radius ’)

norm( eigcl_dt(i) - alpha_dt )

disp(’ *** Press any key *** ’); pause

else

error(’FAILURE IN Disc STAB !!!’)

end

end

% pzmap of CLOSED LOOP SYSTEM

fig=10; figure(fig);fig=fig+1;%

zgrid ; hold on ; pzmap( closed_orig_dtsys ); hold off

%----- END
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14 Discrete Time Switched systems: stability analysis and con-
trol synthesis (INCOMPL)

The material in this subsection comes from the research work of Daafouz [28]. See also [29, 30,
31, 32, 33] for a tutorial introduction on switched systems. Reference [28] investigates the stability
analysis and control synthesis of switched systems in the discrete domain. This class of “switched
hybrid” systems is given by

xk+1 = Aσxk + Bσuk, yk = Cσxk (213)

where the switching rule σ takes values in a finite set I = {1, ...,N}which means that the matrices
Aσ, Bσ,Cσ are allowed to take values, at an arbitrary discrete time, in the finite set
(A1, B1,C1), . . . , (AN , BN ,CN).

The switching rule σ is NOT known a priori but we assume that its instantaneous value is avail-
able in real time (a rather realistic assumption where the switched system is supervised by a discrete–
event system and the value of the discrete state is available in real time). The control synthesis is
related to the design of a switched output feedback control uk = Kσyk ensuring stability of the
closed–loop system

xk+1 = (Aσ + BσKσCσ)xk (214)

The problem examined is the stability of the origin of an autonomous (discrete–time) switched
system given by

xk+1 = Aσxk (215)

Define the “indicator function” s(k) = [s1(k), ...sN(k)]′ with

si(k) =

{
1, when switched system is in ith mode (Ai) ,
0, otherwise i.e not in ith mode (, Ai) . (216)

The switched system xk+1 = Aσxk can also be written as

x(k + 1) =

N∑
i=1

si(k)Aix(k) (217)

Parameter–dependent Lyapunov functions have been used to check stability of polytopic time–
varying systems. In the case of (217) this corresponds to the switched Lyapunov function defined
as

V(k, x(k)) = x(k)T P(s(k))x(k) = x(k)T (
N∑

i=1

si(k)Pi)x(k) (218)

with P1, ..., PN symmetric positive–definite matrices. If such a positive–definite Lyapunov func-
tion exists and ∆V(k, x(k)) = V(k + 1, x(k + 1)) − V(k, x(k)) is negative–definite along the solutions
of (217), then the origin of the switched system (215) is globally asymptotically stable as shown by
the following general theorem from [?].

Theorem 90 [?] The equilibrium “0” of x(k + 1) = fk(x(k)) is globally uniformly asymptotically
stable if there is a function V : Z+xRn → R such that (i) V is a positive–definite function, decrescent,
and radially unbounded; (ii) ∆V(k, x(k)) = V(k + 1, x(k + 1)) − V(k, x(k)) is negative–definite along
the solutions of x(k + 1) = fk(x(k))
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The Lyapunov function (218) is a positive–definite function, decrescent, and radially unbounded
since

V(k, 0) = 0,∀k ≥ 0 and

β1 ‖xk‖
2 ≤ V(k, x(k)) = x(k)T (

N∑
i=1

si(k)Pi)x(k) ≤ β2 ‖xk‖
2 (219)

for all x(k) ∈ Rn, k ≥ 0 with β1 = mini∈Iλmin(Pi) and β2 = maxi∈Iλmax(Pi) positive scalars.
The following theorem from [28] gives three equivalent necessary and sufficient conditions

for the existence of a Lyapunov function of the form (218) whose difference is negative–definite,
proving asymptotic stability of (215).

Theorem 91 [28] The following statements are equivalent.

• There exists a Lyapunov of the form (218) whose difference is negative–definite, proving
asymptotic stability of (215)

• There exist N symmetric matrices P1, ..., PN satisfying[
Pi AT

i P j

P jAi P j

]
> 0 ∀(i, j) ∈ IxI (220)

The Lyapunov function is then given by V(k, x(k)) = x(k)T

(
N∑

i=1
si(k)Pi

)
x(k)

• There exist N symmetric matrices S 1, ..., S N and N matrices G1, ...,GN satisfying[
Gi + GT

i − S i GT
i AT

i
AiGi S j

]
> 0 ∀(i, j) ∈ IxI (221)

The Lyapunov function is then given by V(k, x(k)) = x(k)T

(
N∑

i=1
si(k)S −1

i

)
x(k).

Condition (220) has also been proposed in [34] to check stability of Piecewise Affine Systems.
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15 Appendix A: Compendium of presented results (H∞ & GCC)

15.1 H∞ State Feedback Synthesis for CT LTI without Uncertainties
The CT–LTI system

ẋ(t) = Ax(t) + Bww(t) + Buu(t), x(0) = 0
z(t) = Czx(t) + Dzww(t) + Dzuu(t)

is stabilizable via state feedback u(t) = Kx(t) such that ‖Tcl(s)‖∞ < γ if and only if there exist
S ∈ S n (SPD matrix) and Z ∈ <m×n such that

S > 0,

 AS + BuW + S AT + WT BT
u Bw S CT

z + WT DT
zu

BT
w −γI DT

zw
CzS + DzuW Dzw −γI

 < 0 (222)

If LMI (222) has a feasible solution (in terms of S , W, γ), the SSF control gain K = WS −1

stabilizes the closed loop system robustly in the sense of “γ-attenuation”.

15.2 H∞ State Feedback Synthesis for CT LTI with Norm Bounded Uncer-
tainties

Open–Loop System (Plant) with Norm Bounded Uncertainties:

ẋ(t) = (A + ∆A)x(t) + Bww(t) + (Bu + ∆Bu)u(t), x(0) = 0
z(t) = Czx(t) + Dzww(t) + Dzuu(t)

Norm Bounded Uncertainties:
[∆A ∆Bu] = DF [Ea Eb] , FT F ≤ I

State Feedback Controller:
u(t) = Kx(t)

Closed–Loop System:

ẋ(t) = (A + BuK + DF(Ea + EbK))x(t) + Bww(t) 4= Aclx(t) + Bclw(t)

z(t) = (Cz + DzuK)x(t) + Dzww(t) 4= Cclx(t) + Dclw(t)

Design Objective: Stabilization AND γ–attenuation (an H∞ objective)

Solution:


(AS + BuW) + (S AT + WT BT

u ) + εDDT Bw S CT
z + WT DT

zu (Ea + EbW)T

∗ −γI DT
zw 0

∗ ∗ −γI 0
∗ ∗ ∗ −εI

 (223)

If LMI (223) has a feasible solution (in terms of S , W, γ, ε), the SSF control gain K = WS −1

stabilizes the closed loop system robustly in the sense of “γ-attenuation” for all admissible norm
bounded uncertainties.
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15.3 GCC problem setup
The Generic Case and Three Special (Sub)Cases of the GCC Approach

• The most Generic Case1: GCC Synthesis for uncertain DT system with state and input delays
i.e. xk+1 = (A + ∆A)xk + (A1 + ∆A1)xk−d + (B + ∆B)uk + (B1 + ∆B1)uk−h

• Case2: GCC Synthesis for uncertain DT systems with only Input Delay i.e. xk+1 = (A +

∆A)xk + (B + ∆B)uk + (B1 + ∆B1)uk−h

• Case3: GCC Synthesis for uncertain DT systems with only State Delay i.e. xk+1 = (A +

∆A)xk + (B + ∆B)uk + (A1 + ∆A1)xk−d

• Case4: GCC Synthesis for uncertain DT systems without Input or State Delay i.e. xk+1 =

(A + ∆A)xk + (B + ∆B)uk

15.4 Result-1a: GCC SSF for Unc-DT-Sys with Input and State delay (most
Generic Case)

The Generic Case Setup: Open–loop DT system with state and input delays and uncertain dynamics

xk+1 = (A + ∆A)xk + (A1 + ∆A1)xk−d + (B + ∆B)uk + (B1 + ∆B1)uk−h (224)

with x ∈ <n and u ∈ <m

• d and h are unknown constant integers representing the number of delay units in the state and
input, respectively, bounded as 0 ≤ d ≤ d∗, 0 ≤ h ≤ h∗ with bounds d∗, h∗ being known

• A, A1, B, B1 are known real constant matrices of appropriate dimensions

• uncertain matrices ∆A, ∆B, ∆A1, ∆B1 represent time-varying parameter uncertainties in the
system model, satisfying

[∆A ∆B ∆A1 ∆B1] = DF [Ea Eb Ed Eh] (225)

• D, Ea Eb Ed Eh are known real constant matrices of appropriate dimensions describing the
structure of uncertainties

• the unknown (time-varying) matrix F satisfies FT F ≤ I, ∀k

Associated with the uncertain open–loop system (83) is the cost function

J =

∞∑
k=0

[
xT

k Qxk + uT
k Ruk

]
(226)

with QT = Q > 0, RT = R > 0 being symmetric and positive definite (SPD) matrices of appropriate
dimensions. Closing the loop in (83) with uk = Kxk, the closed–loop dynamics are

xk+1 = [A + BK + DF(Ea + EbK)] xk + [B1 + DFEh] Kxk−h +

[A1 + DFEd] xk−d
4
= AC(k)xk + BH(k)Kxk−h + AD(k)xk−d (227)
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with the uncertain matrices AC , BH , AD, defined as

AC
4
= A + BK + DF(Ea + EbK), BH

4
= B1 + DFEh, AD

4
= A1 + DFEd (228)

The cost function associated with the closed–loop system (86) is

Jcl =

∞∑
k=0

xT
k

[
Q + KT RK

]
xk (229)

Sufficient condition for the existence of SSF GCC - (just a stepping stone - useless for com-
putations)

Theorem 92 The control law u∗k = Kxk is a guaranteed cost controller if there exist symmetric
positive definite matrices P, Pd ∈ <

n×n,T ∈ <m×m such that for any admissible uncertain matrix F
the following matrix inequality holds: Π AT

C PAD AT
C PBH

∗ AT
DPAD − Pd AT

DPBH

∗ ∗ BT
H PBH − T

 < 0 (230)

Π
4
= AT

C PAC −P + Pd + KT T K + Q + KT RK︸                                    ︷︷                                    ︸ , AT
C PAC + Λ (231)

with the obvious definition for Λ and the uncertain closed–loop system matrices AC , BH , AD already
defined in (87). Moreover the closed-loop cost function satisfies

Jcl ≤ J∗ 4
= xT

0 Px0 +

d∑
i=1

xT
−iPd x−i +

h∑
i=1

xT
−iK

T T Kx−i

≤ λmax(UT PU) + d∗λmax(UT PdU) + h∗λmax(UT KT T KU) (232)

Theorem 93 For the uncertain system (83) and the cost function (85) there exist symmetric positive-
definite matrices P,T such that matrix inequality (89) holds for all admissible uncertainties if and
only if there exist a positive scalar ε > 0, a matrix W ∈ <m×n and symmetric positive definite
matrices S = P−1 ∈ <n×n,M = P−1

d ∈ <n×n, N = T−1 ∈ <m×m such that the following LMI is
satisfied.

−S + εDDT AS + BW A1M B1N 0 0 0 0 0
∗ −S 0 0 (EaS + EbW)T S T WT S WT

∗ ∗ −M 0 MET
d 0 0 0 0

∗ ∗ ∗ −N NET
h 0 0 0 0

∗ ∗ ∗ ∗ −εI 0 0 0 0
∗ ∗ ∗ ∗ ∗ −M 0 0 0
∗ ∗ ∗ ∗ ∗ 0 −N 0 0
∗ ∗ ∗ ∗ ∗ 0 0 −Q−1 0
∗ ∗ ∗ ∗ ∗ 0 0 0 −R−1


< 0.

(233)

Furthermore, if matrix inequality (189) has a feasible solution in terms of the variables {ε, W, S,
M, N } then the state feedback control law uk = WS −1xk is a guaranteed cost control law and the
corresponding closed-loop cost function satisfies

J ≤ (1 + h∗)λmax(UT S −1U) + d∗λmax(UT M−1U) (234)
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15.5 Result-1b: SSF Synthesis for Unc-DT-Sys with Input and State delay -
no GCC, only Robust Stabilization

If the demand for guaranteed cost is alleviated, following the same lines of the proof of Theorem 69,
it is easy to prove the following Corollary.

Corollary 94 For the uncertain system (83) (with input and state delays) there exist symmetric

positive-definite matrices P, Pd,T such that ∆Vk = V tot
k+1−V tot

k < 0 (with V tot
k = xT

k Pxk+
h∑

j=1
xT

k− jK
T T Kxk− j+

d∑
i=1

xT
k−iPd xk−i defined in (191)) holds for all admissible uncertainties if and only if there exist a pos-

itive scalar ε > 0, a matrix W ∈ <m×n and symmetric positive definite matrix S = P−1 ∈ <n×n,
M = P−1

d ∈ <
m×m, N = T−1 ∈ <m×m such that the following LMI is satisfied.

−S + εDDT AS + BW A1M B1N 0 0 0
∗ −S 0 0 (EaS + EbW)T S WT

∗ ∗ −M 0 MET
d 0 0

∗ ∗ ∗ −N NET
h 0 0

∗ ∗ ∗ ∗ −εI 0 0
∗ ∗ ∗ ∗ ∗ −M 0
∗ ∗ ∗ ∗ ∗ 0 −N


< 0. (235)

Furthermore, if matrix inequality (190) has a feasible solution, in terms of the variables {ε, W, S},
then the state feedback control law uk = WS −1xk = Kxk is a robustly stabilizing control law. �

LMIs (190) is a ”subset of the Generic” LMI (189) formally derived after removing the “appro-
priate” rows and columns i.e. the last two rows and columns containing the matrices Q, R.

15.6 Result-2a: GCC SSF for Unc-DT-Sys with Input Delay (only)
Open–loop DT system with state and input delay (NO STATE DELAY ⇒ A1 = ∆A1 = Ed = 0)
and uncertain dynamics

xk+1 = (A + ∆A)xk + (B + ∆B)uk + (B1 + ∆B1)uk−h (236)

with x ∈ <n and u ∈ <m and (since A1 = ∆A1 = Ed = 0)

[∆A ∆B ∆B1] = DF [Ea Eb Eh] (237)

with unknown (time-varying) matrix F satisfying FT F ≤ I. Furthermore h is an unknown constant
integer (delay units in the input), bounded as 0 ≤ h ≤ h∗ with h∗ known.

Same cost function (85) as before.
The closed–loop dynamics with uk = Kxk are

xk+1 = [A + BK + ∆A + ∆BK] xk + [B1 + ∆B1] Kxk−h

= [A + BK + DF(Ea + EbK)] xk + [B1 + DFEh] Kxk−h
4
= AC(k)xk + BH(k)Kxk−h (238)

with the uncertain matrices AC , BH , defined as

AC
4
= A + BK + DF(Ea + EbK), BH

4
= B1 + DFEh (239)

Sufficient condition for the existence of SSF GCC (just a stepping stone - useless for com-
putations): The sufficient condition for the existence of memoryless state feedback GCC law is a
special “case” of Theorem (68)
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Theorem 95 The control law u∗k = Kxk is a guaranteed cost controller for (110) if there exist
symmetric positive definite matrices P ∈ <n×n,T ∈ <m×m such that for any admissible uncertain
matrix F the following matrix inequality holds:[

Π AT
C PBH

∗ BT
H PBH − T

]
< 0 (240)

Π
4
= AT

C PAC −P + KT T K + Q + KT RK︸                            ︷︷                            ︸ , AT
C PAC + Λ (241)

with the obvious definition for Λ and the uncertain closed–loop system matrices AC , BH already
defined in (113). Moreover the closed-loop cost function satisfies

Jcl ≤ J∗ 4= xT
0 Px0 +

h∑
i=1

xT
−iK

T T Kx−i ≤ λmax(UT PU) + h∗λmax(UT KT T KU) (242)

GCC Synthesis for systems with (only) INPUT DELAY

Theorem 96 For the uncertain (input delayed) system (110) and the cost function (85) there exist
symmetric positive-definite matrices P,T such that matrix inequality (114) holds for all admissible
uncertainties if and only if there exist a positive scalar ε > 0, a matrix W ∈ <m×n and symmetric
positive definite matrices S = P−1 ∈ <n×n, N = T−1 ∈ <m×m such that the following LMI is satisfied.

−S + εDDT AS + BW B1N 0 0 0 0
∗ −S 0 (EaS + EbW)T WT S WT

∗ ∗ −N NET
h 0 0 0

∗ ∗ ∗ −εI 0 0 0
∗ ∗ ∗ ∗ −N 0 0
∗ ∗ ∗ ∗ ∗ −Q−1 0
∗ ∗ ∗ ∗ ∗ ∗ −R−1


< 0. (243)

Furthermore, if matrix inequality (123) has a feasible solution in terms of the variables {ε, W,
S, N } then the state feedback control law uk = WS −1xk is a guaranteed cost control law and the
corresponding closed-loop cost function satisfies J ≤ (1 + h∗)λmax(US −1U).

Note that the LMI (123) of Theorem 46, results from the “Generic” LMI (189) after removing
the third row/column (containing M, A1, Ed which are “zero” matrices since they involve state-
delay) and the sixth row/column (involve M, S ) with M being a “zero” while matrix S is already
constrained via LMI (123)

15.7 Result-2b: SSF Synthesis for Unc-DT-Sys with Input Delay (only) - no
GCC, only Robust Stabilization

If the demand for guaranteed cost is alleviated, following the same lines of the proof of Theorem 46,
it is easy to prove the following Corollary.

Corollary 97 For the uncertain (input delayed) system (110) there exist symmetric positive-definite

matrices P,T such that ∆Vk = V tot
k+1−V tot

k < 0 (with V tot
k defined as V tot

k = xT
k Pxk +

h∑
j=1

xT
k− jK

T T Kxk− j)

holds for all admissible uncertainties if and only if there exist a positive scalar ε > 0, a matrix
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W ∈ <m×n and symmetric positive definite matrices S = P−1 ∈ <n×n, N = T−1 ∈ <m×m such that
the following LMI is satisfied.

−S + εDDT AS + BW B1N 0 0
∗ −S 0 (EaS + EbW)T WT

∗ ∗ −N NET
h 0

∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ 0
∗ ∗ ∗ ∗ −N


< 0. (244)

Furthermore, if matrix inequality (131) has a feasible solution, in terms of the variables {ε, W, S},
then the state feedback control law uk = WS −1xk = Kxk is a robustly stabilizing control law. �

LMIs (131) is a ”subset of the Generic” LMI (123) formally derived after removing the “appropriate”
rows and columns i.e. the last two rows and columns containing the matrices Q, R.

15.8 Result-3a: GCC SSF for Unc-DT-Sys with State Delay (only)
Same cost function (85) as before.

Open–loop DT system with (only) state delay and uncertain dynamics

xk+1 = (A + ∆A)xk + (A1 + ∆A1)xk−d + (B + ∆B)uk (245)

with x ∈ <n and u ∈ <m and NO INPUT DELAY (hence B1 = ∆B1 = Eh = 0)

[∆A ∆A1 ∆B] = DF [Ea Ed Eb] (246)

with the unknown (time-varying) matrix F satisfying FT F ≤ I. Furthermore d is an unknown
constant integer (delay units in the state), bounded as 0 ≤ d ≤ d∗ with d∗ known. The closed–loop
dynamics with uk = Kxk are

xk+1 = [A + BK + DF(Ea + EbK)] xk + [A1 + DFEd] xk−d
4
= AC(k)xk + AD(k)xk−h (247)

with the uncertain matrices AC , AD, defined as

AC
4
= A + BK + DF(Ea + EbK), AD

4
= A1 + DFEd (248)

Sufficient condition for the existence of SSF GCC for Systems with (only) STATE DELAY
(just a stepping stone - useless for computations): The sufficient condition for the existence of
memoryless state feedback GCC law is a special “case” of Theorem (68)

Theorem 98 The control law u∗k = Kxk is a guaranteed cost controller for (132) if there exist
symmetric positive definite matrices P, Pd ∈ <

n×n such that for any admissible uncertain matrix F
the following matrix inequality holds:[

Π AT
C PAD

∗ AT
DPAD − Pd

]
< 0 (249)

Π
4
= AT

C PAC −P + Pd + Q + KT RK︸                       ︷︷                       ︸ , AT
C PAC + Λ (250)
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with the obvious definition for Λ and the uncertain closed–loop system matrices AC , AD already
defined in (135). Moreover the closed-loop cost function satisfies

Jcl ≤ J∗ 4= xT
0 Px0 +

d∑
i=1

xT
−iPd x−i ≤ λmax(UT PU) + d∗λmax(UT PdU) (251)

GCC Synthesis for systems with (only) STATE DELAY

Theorem 99 For the uncertain (state delayed) system (132) and the cost function (85) there exist
symmetric positive-definite matrices P, Pd such that matrix inequality (136) holds for all admissible
uncertainties if and only if there exist a positive scalar ε > 0, a matrix W ∈ <m×n and symmetric
positive definite matrices S = P−1 ∈ <n×n, M = P−1

d ∈ <m×m such that the following LMI is
satisfied.

−S + εDDT AS + BW A1M 0 0 0 0
(AS + BW)T −S 0 (EaS + EbW)T S S WT

MAT
1 0 −M MET

d 0 0 0
0 (EaS + EbW) Ed M −εI 0 0 0
0 S 0 0 −M 0 0
0 S 0 0 0 −Q−1 0
0 W 0 0 0 0 −R−1


< 0.

(252)

Furthermore, if matrix inequality (145) has a feasible solution in terms of the variables {ε, W, S}
then the state feedback control law uk = WS −1xk is a guaranteed cost control law and the corre-
sponding closed-loop cost function satisfies J ≤ (d∗)λmax(US −1U)

Note that the LMI (145) of Theorem 53, results from the “Generic” LMI (189) after removing
the fourth row/column (involve B1,N) and the seventh row/column (involve W,N).

15.9 Result-3b: SSF Synthesis for Unc-DT-Sys with State Delay (only) - no
GCC, only Robust Stabilization

If the demand for guaranteed cost is alleviated, following the same lines of the proof of Theorem 53,
it is easy to prove the following Corollary.

Corollary 100 For the uncertain (state delayed) system (132) there exist symmetric positive-definite

matrices P,T such that ∆Vk = V tot
k+1 − V tot

k < 0 (with V tot
k = xT

k Pxk +
d∑

i=1
xT

k−iPd xk−i holds for all

admissible uncertainties if and only if there exist a positive scalar ε > 0, a matrix W ∈ <m×n and
symmetric positive definite matrices S = P−1 ∈ <n×n, M = P−1

d ∈ <
m×m such that the following LMI

is satisfied. 

−S + εDDT AS + BW A1M 0 0
(AS + BW)T −S 0 (EaS + EbW)T S

MAT
1 0 −M MET

d 0
0 (EaS + EbW) Ed M −εI 0
0 S 0 0 −M
0 S 0 0 0
0 W 0 0 0


< 0. (253)

Furthermore, if matrix inequality (154) has a feasible solution in terms of the variables {ε, W, S}
then the state feedback control law uk = WS −1xk = Kxk is a robustly stabilizing control law.
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16 Appendix B: The three “benchmark” systems used in simu-
lations

The following SISO systems with x ∈ <n, n = 2 and u ∈ <m, m = 1 are used as “benchmark”
systems in the simulation sections.

16.1 The Stable Minimum Phase “benchmark” system
State Space Equations

The continuous–time system with transfer function G(s) = 2
s2+3s+2 , is a SISO open–loop stable

system with the following state space description.

ẋ(t) =

[
0 1
−2 −3

]
x(t) +

[
0
2

]
u(t), y(t) =

[
1 0

]
x(t) . (254)

16.2 The Stable Nonmiminimum phase “benchmark” system
State Space Equations

The non–minimum phase open–loop stable continuous–time system G9(s) = −6s+3
50s2+15s+1 from [5],

with a state space description,

ẋ(t) =

[
0 1
−0.02 −0.30

]
x(t) +

[
0
1

]
u(t), y(t) =

[
0.0600 −0.1200

]
x(t) (255)

16.3 The Unstable “benchmark” system
State Space Equations

The continuous–time system with transfer function G(s) = 0.1
s2+0.1s is a SISO open–loop unstable

system extensively used as “benchmark” system in NCS literature [35, 36, 37, 38]. Its state–space
description is

ẋ(t) =

[
0 1
0 −0.1

]
x(t) +

[
0

0.1

]
u(t), y(t) =

[
1 0

]
x(t) (256)

2-BE CONTINUED... 12Nov2011, 12Nov2020
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