
Copyright ©2008 by Zilog®, Inc. All rights reserved.
 www.zilog.com

UM018807-0208

User Manual

High-Performance 16-bit Microcontrollers

ZNEO® CPU Core

http://www.ZiLOG.com

ZNEO® CPU Core
User Manual

ii
DO NOT USE IN LIFE SUPPORT

LIFE SUPPORT POLICY
ZILOG'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE
SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF
THE PRESIDENT AND GENERAL COUNSEL OF ZILOG CORPORATION.

As used herein
Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b)
support or sustain life and whose failure to perform when properly used in accordance with instructions for
use provided in the labeling can be reasonably expected to result in a significant injury to the user. A
critical component is any component in a life support device or system whose failure to perform can be
reasonably expected to cause the failure of the life support device or system or to affect its safety or
effectiveness.

Document Disclaimer
©2008 by Zilog, Inc. All rights reserved. Information in this publication concerning the devices,
applications, or technology described is intended to suggest possible uses and may be superseded. ZILOG,
INC. DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY
OF THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT.
ZILOG ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY
INFRINGEMENT RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR
TECHNOLOGY DESCRIBED HEREIN OR OTHERWISE. The information contained within this
document has been verified according to the general principles of electrical and mechanical engineering.

Z8, Z8 Encore!, Z8 Encore! XP, Z8 Encore! MC, Crimzon, eZ80, and ZNEO are trademarks or registered
trademarks of Zilog, Inc. All other product or service names are the property of their respective owners.

Warning:
UM018807-0208

ZNEO® CPU Core
User Manual

iii
Revision History
Each instance in the Revision History reflects a change to this document from its previous
revision. For more details, refer to the corresponding pages and appropriate links in the
table below.

Date
Revision

Level Section Description Page No.
February
2008

07 Flags Register (FLAGS)

Loading an Effective Address
System Exceptions
Stack Overflow

Updated User Flag
description.
Updated Example.
Updated first paragraph.
Updated second step for
Stack Overflow protection.

11

34
47
48

September
2007

06 Instruction Set Reference Updated Examples for DEC
Instruction.

95

March
2007

05 Loading an Effective Address Change in instruction. 34
Flags Register (FLAGS)
Vectored Interrupts
Instruction Set Reference

Updated with CIRQE bit. 9,
41,
63

May
2006

04 Various Updated ZNEO trademark
issues. Applied current
publications template.

All

Features,
Control Registers,
Address Space,
I/O Memory,
Example

Clarified size of address
space.

1,
8,
15,
16,
30

CPU Control Register
(CPUCTL)

Clarified section. 12

Memory Map,
Jump Addressing

Jump addresses FF_E000H
and above are reserved.

16,
40

Internal Non-Volatile Memory,
Internal RAM,
I/O Memory,
External Memory

Clarified use of assembler
address ranges.

17,
19

Direct Memory Addressing 16-bit address range is in
highest and lowest 32K
blocks, not 8K blocks.

32

January
2006

03 Various Corrected ZNEO trademark
issues.

All
UM018807-0208 Revision History

ZNEO® CPU Core
User Manual

iv
January
2006

02 Instruction Opcodes Moved opcodes beginning
0000 1011 and 0001 001+
to correct listing order.
(Opcode-to-instruction
relationship is not changed).

57

Corrected sequence of
unimplemented opcodes and
removed duplicate row.

62

UDIV64 Corrected “After” register in
example.

181

Date
Revision

Level Section Description Page No.
UM018807-0208 Revision History

ZNEO® CPU Core
User Manual

v

Table of Contents
Manual Objectives . ix

About This Manual . ix
Intended Audience . ix
Manual Organization . ix
Manual Conventions .x
Safeguards .xii

Architectural Overview . 1
Features . 1
Program Control . 2
Processor Block Diagram . 2

Fetch Unit . 3
Execution Unit . 4

Instruction Cycle Time . 5
Instruction Fetch Cycles . 5
Execution Cycles . 6

Control Registers . 8
Program Counter Overflow Register . 8
Stack Pointer Overflow . 8
Flags Register (FLAGS) . 9
CPU Control Register (CPUCTL) . 12

Address Space . 15
Memory Map . 16
Internal Non-Volatile Memory . 17
Internal RAM . 18
I/O Memory . 18

I/O Memory Precautions . 18
External Memory . 18
Endianness . 19
Bus Widths . 19

Assembly Language Introduction . 21
 ZNEO CPU Instruction Classes . 23

Operand Addressing . 27
Immediate Data . 28
Register Addressing . 29
Direct Memory Addressing . 29

Memory Data Size . 30
Resizing Data . 31
UM018807-0208 Table of Contents

ZNEO® CPU Core
User Manual

vi
Register-Indirect Memory Addressing . 33
Loading an Effective Address . 34
Using the Program Counter as a Base Address . 34
Memory Address Decrement and Increment . 35
Using the Stack Pointer (R15) . 36
Using the Frame Pointer (R14) . 37

Bit Manipulation . 38
Clearing Bits (Masked AND) . 38
Setting Bits (Masked OR) . 38
Testing Bits (TM and TCM) . 39

Jump Addressing . 40

Interrupts . 41
Vectored Interrupts . 41

Interrupt Enable and Disable . 41
Interrupt Processing . 42
Returning From a Vectored Interrupt . 43
Interrupt Priority and Nesting . 44
Software Interrupt Generation . 45

Polled Interrupts . 45

System Exceptions . 47
Program Counter Overflow . 47
Stack Overflow . 48
Divide-by-Zero . 49
Divide Overflow . 49
Illegal Instruction . 49

Software Traps. 51
Instruction Opcodes . 53
Instruction Set Reference. 63

Instruction Notation . 63
Numerical and Expression Notation . 63
Miscellaneous Abbreviations . 64

Example Description . 65
Mnemonic . 65
ADC . 66
ADD . 69
AND . 72
ATM . 76
BRK . 77
CALL . 78
Table of Contents UM018807-0208

ZNEO® CPU Core
User Manual

vii
CALLA . 80
CLR . 81
COM . 83
CP . 85
CPC . 88
CPCZ . 91
CPZ . 93
DEC . 95
DI . 97
DJNZ . 98
EI . 100
EXT . 101
HALT . 103
ILL . 104
INC . 106
IRET . 108
JP . 110
JPA . 111
JP cc . 112
LD . 113
LD cc . 119
LDES . 120
LEA . 121
LINK . 122
MUL . 123
NEG . 125
NOFLAGS . 127
NOP . 128
OR . 129
POP . 133
POPF . 135
POPMLO . 136
POPMHI . 136
PUSH . 139
PUSHF . 141
PUSHMHI . 142
PUSHMLO . 142
RET . 144
RL . 145
SBC . 147
SDIV . 150
UM018807-0208 Table of Contents

ZNEO® CPU Core
User Manual

viii
SLL . 152
SLLX . 154
SMUL . 156
SRA . 158
SRAX . 160
SRL . 162
SRLX . 164
STOP . 166
SUB . 167
TCM . 170
TM . 173
TRAP . 176
UDIV . 178
UDIV64 . 180
UMUL . 182
UNLINK . 184
WDT . 185
XOR . 186

Index . 191
Customer Support . 199
Table of Contents UM018807-0208

ZNEO® CPU Core
User Manual

ix
Manual Objectives
This user manual describes the CPU architecture and instruction set common to all
Zilog devices that incorporate the ZNEO® CPU. For complete information on interfaces,
internal peripherals and memory, and I/O registers for each device, refer to the
device-specific Product Specification.

About This Manual

Zilog® recommends you to read and understand everything in this manual before setting
up and using the product. We have designed this manual to be used either as an
instructional manual or a reference guide to important data.

Intended Audience

This document is written for Zilog customers with experience in writing microprocessor,
assembly code, and compilers. Some introductory material is included to help new
customers who are less familiar with this device.

Manual Organization

This user manual is divided into nine chapters to describe the following device
characteristics:

Architectural Overview
Describes the ZNEO CPU’s features and benefits, architecture, and control registers.

Address Space
Introduces the ZNEO CPU’s unified memory address space, with a memory map
illustrating how the available memory areas are addressed.

Assembly Language Introduction
Briefly introduces some of the assembly language terminology used in the following
chapters and lists ZNEO CPU instructions in functional groups.

Operand Addressing
Explains ZNEO CPU operand addressing and data sizes.
UM018807-0208 Manual Objectives

ZNEO® CPU Core
User Manual

x

Interrupts
Introduces the use of vectored and polled interrupts to service interrupt requests from
peripherals or external devices.

System Exceptions
Explains system exceptions and the events which cause the processor overflow, stack
overflow, divide-by-zero, divide overflow, and illegal instruction.

Software Traps
Explains the software trap instruction.

Instruction Opcodes
Numerical list of ZNEO CPU instruction opcodes and syntax.

Instruction Set Reference
Alphabetical list of ZNEO CPU instruction descriptions, with syntax and opcodes.

Manual Conventions

The following manual conventions provide clarity and ease of use.
Notations specific to assembly language, address operands, opcodes, and instruction
descriptions are explained in the chapters discussing those topics.

Courier Typeface
User-typed commands, code lines and fragments, bit names, equations, hexadecimal
addresses, and executable items are distinguished from general text by the use
of the Courier typeface. Where the use of the font is not indicated (for example, Index)
the name of the entity is presented in upper case.
For example, Internal RAM begins at FFFF_0000H.

Binary Values
Binary values are designated by an uppercase ‘B’ suffix. For readability, underscore ‘_’
characters separate large values into four-digit groups, except in program statements.
For example, 8-bit binary value 0100_0010B.

Hexadecimal Values
Hexadecimal values are designated by an uppercase ‘H’ and appear in the Courier
typeface. For readability, underscore ‘_’ characters separate large values into four-digit
groups, except in program statements as illustrated in the below examples:
• Example 1: R1 is set to F8H.

• Example 2: 32-bit hexadecimal value 1234_5678H
Manual Objectives UM018807-0208

ZNEO® CPU Core
User Manual

xi
Bit Numbering
Bits are numbered in order of significance, from 0 to n–1 where 0 indicates the least
significant bit and n indicates the total number of bits.
For example, 8 bits of a memory byte are numbered from 0 to 7.
Registers, memory bytes, and binary values are illustrated with the highest-numbered bit
on the left and the lowest-numbered bit on the right.
For example, Bit 6 of the value 0100_0000B is 1.

Brackets
In text, square brackets, [], indicate one or more bits of a register, memory location, or
bus. A colon between bit numbers indicates a range of bits. A comma between bit numbers
indicates individual bits as given below:
• Example 1: ADDR[31:0] refers to bit 31 through bit 0 of the ADDR bus or memory

location. ADDR[31] is the most significant bit (msb), and ADDR[0] is the least signif-
icant bit (lsb). ADDR[31:24] is the most significant byte (MSB), and ADDR[7:0] is
the least significant byte (LSB).

• Example 2: If the value of R1[7:0] is 0100_0010B, the bits R1[6,2] are both 1.

Braces
The curly braces, { }, indicate a single register, memory address, or bus created by
concatenating combination of smaller registers, addresses, buses, or individual bits.
For example, the 32-bit effective address {FFFFH, ADDR[15:0]} consists of a 16-bit
hexadecimal value (FFFFH) and a 16-bit direct address. FFFFH is the most significant
word (16 bits) and ADDR[16:0] is the least significant word of the resulting 32-bit
address.

Use of the Words Set, Reset and Clear
The word set indicates a 1 is stored in a register or memory bit or flag. The words reset or
clear indicates a 0 is stored in a register or memory bit or flag.

Use of the Terms LSB, MSB, lsb, and msb
In this document, the terms LSB and MSB, when appearing in upper case, mean least
significant byte and most significant byte, respectively. The lowercase forms (lsb and msb)
mean least significant bit and most significant bit, respectively.

Use of Initial Uppercase Letters
Initial uppercase letters designate settings, modes, and conditions in general text:
• Example 1: Stop mode.

• Example 2: The receiver forces the SCL line to Low.

• The Master can generate a Stop condition to abort the transfer.
UM018807-0208 Manual Objectives

ZNEO® CPU Core
User Manual

xii
Use of All Uppercase Letters
The use of all uppercase letters designates assembly mnemonics or the names of states and
hardware commands.
• Example 1: The bus is considered BUSY after the Start condition.

• Example 2: A START command triggers the processing of the
initialization sequence.

Safeguards

It is important to understand the following safety terms:

Indicates a procedure or file may become corrupted if you do not follow directions.Caution:
Manual Objectives UM018807-0208

ZNEO® CPU Core
User Manual

1

Architectural Overview
Zilog’s ZNEO CPU meets the continuing demand for faster and more code-efficient
microcontrollers. ZNEO CPU’s architecture greatly improves the execution efficiency of
code developed using higher-level programming languages like ‘C’ language.

Features

The key features of ZNEO CPU architecture include:
• Highly efficient register-based architecture with sixteen 32-bit registers. All register

operations are 32 bits wide

• Up to 4 GB linear address space (16 MB on current devices) with multiple internal
and external memory and I/O buses

• Short 16-bit addressing for internal RAM, I/O, and 32K of non-volatile memory

• Instructions using memory can operate on 8-bit, 16-bit, or 32-bit values

• Support for 16-bit memory paths (internal and external)

• Pipelined instruction fetch, decode, and execution

• Bus arbiter supports simultaneous instruction and memory access (when possible)

Other features of the ZNEO CPU include:
• Direct register-to-register architecture allows each 32-bit register to function as an

accumulator. This improves the execution time and decreases the memory required for
programs.

• Expanded stack support:
– Push/Pop instructions use one 32-bit register as Stack Pointer
– Single-instruction push and pop of multiple registers
– Stack Pointer overflow protection
– Predecrement/postincrement Load instructions simplify the use of multiple stacks
– Link and Unlink operations with enhanced Frame Pointer-based instructions for

efficient access to arguments and local variables in subroutines

• Program Counter overflow protection

• User-selectable bus bandwidth control for DMA and CPU sharing
UM018807-0208 Architectural Overview

ZNEO® CPU Core
User Manual

2

Program Control

ZNEO CPU is controlled by a program stored in memory as object code. An object code is
a sequence of numerical opcode and operand bytes. An opcode specifies an instruction to
perform while operands specify the data addresses to be operated upon. Numerical object
code is rarely used to write programs. Instead, programs is written in a symbolic assembly
language using easily remembered (mnemonic) instructions. A program called an
assembler translates assembly language into object code.
This user manual provides details on using ZNEO CPU instructions in both object code
and assembly language. Those interested in writing assembly language can skip object
code details handled by the assembler.
Programmers using high-level languages like ‘C’ require this manual while writing
optimized routines in assembly language. Otherwise the compiler or interpreter’s
documentation should describe processor-specific details affecting program operation.

Processor Block Diagram

The ZNEO CPU consists of following two major functional blocks:
• Fetch Unit

• Execution Unit
The Fetch and Execution units access memory through a bus arbiter. The Execution Unit
is subdivided into the Instruction State Machine, Program Counter, Arithmetic Logic Unit
(ALU), and ALU registers. Figure 1 on page 3 displays the ZNEO CPU architecture.
Architectural Overview UM018807-0208

ZNEO® CPU Core
User Manual

3

Figure 1. ZNEO CPU Block Diagram

Fetch Unit
The Fetch Unit’s primary function is to fetch opcodes and operand words (including
immediate data) from memory. The Fetch Unit also fetches interrupt vectors. The Fetch
Unit is pipelined and operates semi-independently from the execution unit. This Unit
performs a partial decoding of the opcode to determine the number of bytes to fetch
for the operation.
The Fetch Unit operation sequence follows:
1. Fetch the first 2-byte opcode word.

2. Determine number of remaining opcode and operand words (one or two).

3. Fetch the remaining opcode and operand words.

4. Present the opcode and operands to the Instruction State Machine.
A ZNEO CPU instruction is always 1, 2, or 3 words long, including operands, and must be
aligned on an even address.

Fetch Unit

Instruction and
Operand Fetch

Instruction State Machine

Arithmetic Logic Unit (ALU)

32-bit ALU Registers, R0-R15

Bus Arbiter

16

Internal
Non-volatile

Memory

16

Internal
RAM

8/16

Internal I/O

8/16

External
Memory
Interface

Program
Counter

Control
Registers

Execution Unit
UM018807-0208 Architectural Overview

ZNEO® CPU Core
User Manual

4

Execution Unit
The Execution Unit performs the processing functions required by the instruction opcodes
and operands which it receives from the Fetch Unit.

Instruction State Machine
The Instruction State Machine is the controller for the ZNEO CPU Execution Unit. After
the initial operation decode by the Fetch Unit, the Instruction State Machine takes over
and completes the instruction. The Instruction State Machine generates effective addresses
and controls memory read and write operations.

Program Counter
The Program Counter contains a counter and adder to monitor the address of the current
instruction and calculates the next instruction address. According to the number of bytes
fetched by the Fetch Unit, the Program Counter increments automatically. The adder
increments and handles Program Counter jumps for relative addressing. The initial value
of the program counter is programmable through the RESET vector.

Refer to the device-specific Product Specification for the RESET vector location.

Programs cannot address the Program Counter directly but the instruction
LEA Rd, 4(PC) can be used to load the current Program Counter value (the next
instruction address) into an ALU register. The JP, CALL, and related instructions are used
to alter the program counter value.
The I/O memory register described in Program Counter Overflow Register on page 8
provides access to the program counter overflow feature.

Arithmetic Logic Unit
The Arithmetic Logic Unit (ALU) performs arithmetic and logical operations on data.
arithmetic operations including addition, subtraction, and multiplication. Logical
operations include binary logic operations, bit shifting, and bit rotation.

ALU Registers
The ZNEO CPU provides 16 highly efficient 32-bit registers associated with the ALU.
The 16 ALU registers are named from R0 to R15.
These registers have the following characteristics:
• The CPU can access ALU registers more quickly than ordinary internal or external

memory.

• All 32 bits of a source or destination ALU register are used for arithmetic and logical
operations.

• When an 8-bit or 16-bit memory read is performed, the value is extended to 32-bits in
the destination register. Unsigned (zero) or Signed extension can be specified.

Note:
Architectural Overview UM018807-0208

ZNEO® CPU Core
User Manual

5

• When an 8-bit or 16-bit memory write is performed, the source register’s value is
truncated (only the least significant 8 or 16 bits are stored in memory.)

• The CALL, IRET, LINK, POP, POPM, PUSH, PUSHM, RET, TRAP, and UNLINK
instructions; system interrupts; and exceptions use register R15 as the Stack Pointer.
If not used, R15 behaves like any other ALU register.

• The LINK, UNLINK, and some LD operations use register R14 as a Frame Pointer.
If not used, R14 behaves like any other ALU register.

Instruction Cycle Time

Instruction cycle times vary from instruction to instruction. Instructions are pipelined
which means the current instruction executes while the next instruction is being fetched.
This allows higher performance at a specific clock speed.

Instruction Fetch Cycles
The following equation is used to calculate the minimum number of cycles required to
fetch an instruction into the CPU:

Fetch Cycles = (bus_wait_states+1) × opcode_bytes / bus_bytes

In the above equation,
• Bus wait states is configured on a bus to accommodate memory specifications.

The number of wait states is added to each memory read or write on that bus.

For details on wait states, refer to the device-specific Product Specification.

• The opcode bytes value can be 2, 4, or 6, depending on the instruction. Immediate
operands (if any) are included in the opcode fetch, so they do not affect execution
cycles.

• The bus bytes value can be 1 or 2, for fetches from an 8-bit or 16-bit bus, respectively.
For more details, see Bus Widths on page 19.

Instructions always begin on an even address, so instruction fetches are not subject to
uneven alignment delays.

An instruction fetch delay cycle can occur if the Fetch and Execution Units request access
to the same bus on the same cycle. In this case, the bus arbiter gives precedence to the
Execution Unit. This kind of delay can be avoided by storing instructions and data in
different memory spaces; for example, instructions in ROM or Flash and data in RAM.

Note:

Note:
UM018807-0208 Architectural Overview

ZNEO® CPU Core
User Manual

6

Execution Cycles
The minimum instruction execution time for most CPU instructions is one system clock
cycle. Additional cycles are required for shift, multiply, divide operations, and operations
which read or write memory locations. Table 1 lists minimum Execution Unit cycle times
for the various instructions. The symbol bus_time is described in the text following the
table, as other factors that affect execution of some instructions.

Table 1. Instruction Execution Cycles

Instruction Operand Types Minimum Execution Unit Cycles

LD, LEA Immediate,
Register-to-Register

1

To or From Memory 1 × bus_time
EXT, LDES, ATM, BRK, DI, DJNZ, EI,
HALT, IRET, NOP, RET, STOP

— 1

PUSH, POP,
PUSHF, POPF

— 1 × bus_time

PUSHM, POPM — Variable

CLR Register 1

Memory 1 × bus_time
CP, CPZ, TM, TCM Immediate,

Register-to-Register
1

To or From Memory 1 + bus_time
ADC, ADD, AND, COM, CPC, CPCZ,
DEC, INC, NEG, OR, SBC, SUB, XOR

Immediate,
Register-to-Register

1

Memory to Register 1 + bus_time
Register to Memory 2 × bus_time

MUL, SMUL, UMUL Operands < 1_0000H 10

Operands ≥ 1_0000H 18

SDIV Destination < 1_0000H 17 if result is positive,
18 if negative

Destination ≥ 1_0000H 33 if result is positive,
34 if negative

UDIV Destination < 1_0000H 17

Destination ≥ 1_0000H 33

UDIV64 — 34
Architectural Overview UM018807-0208

ZNEO® CPU Core
User Manual

7

Execution cycles can be affected by the following factors:
• The symbol bus_time stands for the time to read or write a value to the addressed

memory bus, as given by the formula below:

(bus_wait_states+1) × ceiling(data_bytes / bus_bytes)

In the above equation,
– Bus wait states is configured for a bus to accommodate memory specifications.

The number of wait states is added to each memory read or write on that bus.
– The ceiling function rounds up to the nearest integer. This accounts for a 1-byte

access on a 2-byte bus, which takes a full memory access cycle, not 1/2 cycle.
– The data bytes value can be 1, 2, or 4, depending on the size of the addressed data

(for direct or register-indirect addressed memory).
– The bus bytes value can be 1 or 2, for fetches from an 8-bit or 16-bit bus,

respectively.
An unaligned 16-bit or 32-bit read or write requires additional cycles. For more
details, see Bus Widths on page 19.

• For LD and LEA instructions, a delay cycle is inserted if a register is loaded
immediately before it is used for the base address in a register-indirect instruction.

• If execution of an instruction ends before all the next instruction words are fetched,
the Execution Unit delays for the number of cycles required by the Fetch unit to
complete the instruction fetch. After an ILL or TRAP instruction executes, the entire
next instruction must be fetched.

For details on wait states, refer to the device-specific Product Specification.

SRA, SRL, SLL, RL — (src / 8) + (src % 8)

SRAX, SRLX, SLLX — src + 1

JP, JP cc, CALL, NOFLAGS, Extend
Prefix

— 0

ILL, TRAP — 1 + 4 × IROM_bus_time
+ 6 × stack_bus_time
+ next_instruction_words

LINK — 2 + 4 × stack_bus_time
UNLINK — 1 + 4 × stack_bus_time

Table 1. Instruction Execution Cycles (Continued)

Instruction Operand Types Minimum Execution Unit Cycles

Note:
UM018807-0208 Architectural Overview

ZNEO® CPU Core
User Manual

8

Control Registers

The ZNEO CPU and internal peripheral control registers are accessed in the I/O memory
space starting at FF_E000H (24-bit address space devices). Table 2 lists control registers
common to all Zilog devices that incorporate the ZNEO CPU. In this table, “X” indicates
an undefined hex digit value.

For complete information on peripheral control registers for a particular device, refer to
the device specific Product Specification.

I/O memory locations can be accessed using a 16 bit address operand. For more
details, see Direct Memory Addressing on page 29.

Program Counter Overflow Register
The Program Counter Overflow register (PCOV) implements program counter overflow
protection. For more details, see Program Counter Overflow on page 47.

Stack Pointer Overflow
The Stack Pointer Overflow register (SPOV) is used to provide stack pointer overflow
protection. For more details, see Stack Overflow on page 48. CALL, ILL, IRET, POP,
PUSH, RET, and TRAP instructions; system interrupts; and exceptions use ALU register.
R15 is used as the Stack Pointer.

Table 2. Control Registers

Address (Hex) Register Description Mnemonic
Reset Value
(Hex)

FF_E004–FF_E007 Program Counter Overflow PCOV FFFFFFFF

FF_E008–FF_E00B Reserved — xxxxxxxx

FF_E00C–FF_E00F Stack Pointer Overflow SPOV 00000000

FF_E010 Flags FLAGS xx

FF_E011 Reserved — xx

FF_E012 CPU Control CPUCTL FF

Note:

Note:
Architectural Overview UM018807-0208

ZNEO® CPU Core
User Manual

9

Flags Register (FLAGS)
This byte register contains the status information regarding the most recent arithmetic,
logical, bit manipulation or rotate and shift operation. The Flags register contains six bits
of status information that are set or cleared by CPU operations. Five of the bits (C, Z, S, V
and B) can be tested with conditional jump instructions. The IRQE bit is the Master
Interrupt Enable flag, and the CIRQE bit is the Chained Interrupt Enable flag.
Figure 2 displays the flags and their bit positions in the Flags register.

Figure 2. Flags Register

Interrupts, System Exceptions, and the software Trap (TRAP) instruction write the value
of the Flags register to the stack. Executing an Interrupt Return (IRET) instruction restores
the value saved on the stack into the Flags register.
Flag settings depend on the data size of the result, which can be 8 bits (Byte), 16 bits
(Word), or 32 bits (Quad, the default). For instructions with destinations in memory, the
mnemonic suffix determines the destination size. If the destination is a register, Flags are
based on the 32-bit result. For more information, see Memory Data Size on page 30.

Carry Flag
The Carry (C) flag is 1 when the result of an arithmetic operation generates a carry out of
or a borrow into the most significant bit (msb) of the data. Otherwise, the Carry flag is 0.
Some bit rotate or shift instructions also affect the Carry flag. Bit [31] is considered msb
for register destinations; the msb for a memory destination depends on the data size.

C Z S V B F1 CIRQE IRQE Flags Register

 Bit
 0

Bit
7

 Master Interrupt Enable

 Chained Interrupt Enable

User Flag 1
Blank Flag
Overflow Flag
Sign Flag
Zero Flag
Carry Flag
UM018807-0208 Architectural Overview

ZNEO® CPU Core
User Manual

10
Zero Flag
For arithmetic and logical operations, Zero (Z) flag is 1 if the result is 0. Otherwise, the
Zero flag is 0. If the result of testing bits is 0, Zero flag is 1; otherwise, the Zero flag is 0.
Also, if the result of a rotate or shift operation is 0, the Zero flag is 1; otherwise, the Zero
flag is 0. The test considers 32 bits for a register destination or the destination size for a
memory destination.

Sign Flag
The Sign (S) flag stores the value of the most significant bit (msb) of a result following an
arithmetic, logical, rotate, or shift operation. For signed numbers, the ZNEO CPU uses
binary two’s complement to represent the data and perform the arithmetic operations.
A 0 in the msb position identifies a positive number; therefore, the Sign flag is also 0.
A 1 in the most significant position identifies a negative number; therefore, the Sign flag is
also 1. Bit [31] is considered msb for register destinations; the msb for a memory
destination depends on the data size.

Overflow Flag
For signed arithmetic, rotate or shift operations, the Overflow (V) flag is 1 when the result
is greater than the maximum possible number or less than the minimum possible number
which is represented with the specified data size in signed (two’s complement) form.
For signed data size ranges, see Table 14 on page 32. The Overflow flag is 0 if no
overflow occurs. Following logical operations, the Overflow flag is 0.
Following addition operations, the Overflow flag is 1 when the operands have the same
sign, but the result has the opposite sign. Following subtraction operations, the Overflow
flag is 1 if the two operands are of opposite sign and the sign of the result is same as the
sign of the source operand. Following shift/rotation operations, the Overflow flag is 1 if
the sign bit of the destination changed during the last bit shift iteration.

Blank Flag
For some arithmetic, logical, and load operations, the Blank (B) flag is set to 1 if a tested
operand value is 0 before the operation. Otherwise B is 0. Both source and destination
operands might be tested, but which operands are tested depends on the operation being
performed. See the instruction descriptions for details.
Unlike other flags, the B flag can be altered by POP and some LD instructions. 8-bit or
16-bit memory operands are tested after unsigned or signed extension, depending on the
instruction. For more information, see Resizing Data on page 31.
The B flag is useful for operations involving a null-terminated strings. For example, after
the following statement executes, Z is set if the tested byte is a carriage return (0DH), or B
is set if the byte is zero.

 CP.B (R6), #0DH
Architectural Overview UM018807-0208

ZNEO® CPU Core
User Manual

11
User Flag
The User Flag (F1) are available as general-purpose status bits. The User Flag is
unaffected by arithmetic operations and must be set or cleared by instructions. The User
Flag must not be used with conditional Jumps. The User Flag is 0 after initial power-up or
Reset.

Chained Interrupt Enable Flag
The Chained Interrupt Enable flag (CIRQE) is used to enable or disable chained-interrupt
optimization, which allows program control to pass directly from one interrupt service
routine to another while omitting unneeded stack operations. For more information,
see Returning From a Vectored Interrupt on page 43.
Whenever a vectored interrupt or system exception occurs, the previous state of the
IRQE flag is copied to CIRQE after the Flags register is pushed onto the stack.
This disables interrupt chaining if interrupts are globally disabled (IRQE=0) when
a nonmaskable interrupt or system exception occurs.
The CIRQE flag is unaffected by other operations, but it may be set or cleared by instruc-
tions, if desired. The CIRQE flag cannot be used with conditional Jumps. The CIRQE flag
is 0 after initial power-up or Reset.

Master Interrupt Enable Flag
The Master Interrupt Enable bit (IRQE) globally enables or disables interrupts. For more
information, see Interrupts on page 41.

Condition Codes
The C, Z, S, V, and B flags control the operation of the conditional jump (JP cc)
instructions. Sixteen frequently useful functions of the flag settings are encoded in a 4-bit
field called the condition code (cc), which are assembled into each conditional jump
opcode. Table 3 summarizes condition codes and their assembly language mnemonics.

Some binary condition codes are expressed by more than one mnemonic.

The result of the flag test operation determines if the conditional jump executes.

Table 3. Condition Codes

Binary Hex
Assembly
Mnemonic Definition

Flag Test Operation
(Jump if True)

0000 0 B Blank B = 1

0001 1 LT Less Than (S XOR V) = 1

0010 2 LE Less Than or Equal (Z OR (S XOR V)) = 1

0011 3 ULE Unsigned Less Than or Equal (C OR Z) = 1

0100 4 OV Overflow V = 1

Note:
UM018807-0208 Architectural Overview

ZNEO® CPU Core
User Manual

12
CPU Control Register (CPUCTL)
Bits [1:0] of CPU Control Register (see Table 4 on page 13) control access to the ZNEO
CPU busses through DMA bandwidth selection.

0101 5 MI Minus S = 1

0110 6 Z Zero Z = 1

0110 6 EQ Equal Z = 1

0111 7 C Carry C = 1

0111 7 ULT Unsigned Less Than C = 1

1000 8 NB Not Blank B = 0

1001 9 GE Greater Than or Equal (S XOR V) = 0

1010 A GT Greater Than (Z OR (S XOR V)) = 0

1011 B UGT Unsigned Greater Than (C OR Z) = 0

1100 C NOV No Overflow V = 0

1101 D PL Plus S = 0

1110 E NZ Non-Zero Z = 0

1110 E NE Not Equal Z = 0

1111 F NC No Carry C = 0

1111 F UGE Unsigned Greater Than or
Equal

C = 0

Table 3. Condition Codes (Continued)

Binary Hex
Assembly
Mnemonic Definition

Flag Test Operation
(Jump if True)
Architectural Overview UM018807-0208

ZNEO® CPU Core
User Manual

13
For more details on the available peripheral control and data registers, and additional
information on DMA operation, refer to the device specific Product Specification.

Table 4. CPU Control Register

BITS 7 6 5 4 3 2 1 0

FIELD Reserved DMABW

RESET 1 1 1 1 1 1 1 1

R/W R R R R R R R/W R/W

ADDR FFFF_E012H

R = Read-only; R/W = Read / Write; R/W0 = Read / Write to 0.

Bit Position Description
[7:2] Reserved—Must be zero.
[1:0] DMABW—DMA Bandwidth Selection

The ZNEO CPU can be configured to support four levels of Direct Memory Access
(DMA) Controller bus bandwidth. Write one of the following values to DMABW[1:0] to
select the portion of bus bandwidth allocated to DMA operations:
00 = DMA can consume 100% of the bus bandwidth
01 = DMA is allowed one transaction for each CPU operation
10 = DMA is allowed one transaction for every two CPU operations
11 = DMA is allowed one transaction for every three CPU operations

Note:
UM018807-0208 Architectural Overview

ZNEO® CPU Core
User Manual

14
Architectural Overview UM018807-0208

ZNEO® CPU Core
User Manual

15
Address Space
The ZNEO CPU has a unique memory architecture with a unified address space.
It supports memory and I/O up to four buses:

• Internal Non-Volatile Memory (Flash, EEPROM, EPROM, or ROM)

• Internal RAM

• Internal I/O Memory (internal peripherals)

• External Memory (and/or memory-mapped peripherals)

The ZNEO CPU Fetch Unit and Execution Unit can access separate buses at the same
time. The CPU can access memories with either 8-bit or 16-bit bus widths. ZNEO CPU
uses 32-bit addressing internally. Hence, the CPU is capable of addressing up to 4 GB of
addresses.
Current ZNEO CPU products ignore address bits [31:24], providing a 24-bit address space
with 16 MB (16,777,216 bytes) of unique memory addresses. Address bits [31:24] must
be written appropriately for the addressed space to allow for possible future expansion.
The CPU also provides instructions which use 16-bit addressing. 16-bit addresses are sign
extended by the CPU to access the highest and lowest 32 KB of the available address
space.
Example—The 16-bit address FEFFH resolves to FF_FEFFH in the 24-bit address space.
Most CPU instructions also use Arithmetic and Logic Unit (ALU) registers for either
source or destination data. See ALU Registers on page 4.

Address space includes the following features:
• Memory Map

• Internal Non-Volatile Memory

• Internal RAM

• I/O Memory

• External Memory

• Endianness

• Bus Widths
UM018807-0208 Address Space

ZNEO® CPU Core
User Manual

16
Memory Map

Figure 3 displays a memory map of the ZNEO CPU. It displays the location of internal
non-volatile memory, internal RAM, and internal I/O Memory. External memory can be
accessed at addresses not occupied by internal memory or I/O.

Figure 3. ZNEO CPU Memory Map (24 Significant Address Bits)

To determine the amount of internal RAM and internal non-volatile memory available for
the specific device and for details on the available option bits and vectors, refer to the
device-specific Product Specification.

Internal Non-Volatile

External Memory Interface

00_0000H

FF_8000H

FF_E000H
FF_FFFFH

FF_xxxxH

Data Addresses Jump Addresses
(Execution Unit) (Fetch Unit)

Internal Bus (One of Three)
External Bus

00_xxxxH

00_0xxxH

FF_xxxxH

xxxxH Device-Specific Boundary
16-Bit Address Space

00_7FFFH

Internal I/O &
Control Registers

Option Bits and Vectors

Memory

External Memory Interface

Internal RAM

Reserved

Note:
Address Space UM018807-0208

ZNEO® CPU Core
User Manual

17
Internal Non-Volatile Memory

Internal non-volatile memory consists of executable program code, constants, and data.
The ZNEO CPU assembler provides configurable address range mnemonics (ROM and
EROM) that can be specified to locate data and program elements in non-volatile memory.
ROM selects non-volatile memory in the 16-bit address space, while EROM selects non-
volatile memory in the 32-bit address space. For more details on data space and segment
definitions, refer to the assembler documentation.
For each product within the ZNEO CPU family, a block of memory beginning at address
00_0000H is reserved for option bits and system vectors (RESET, trap, interrupts, System
Exceptions; etc.). Table 5 provides an example reserved memory map for a ZNEO CPU
product with 24 interrupt vectors.

Table 5. Reserved Memory Map Example

Memory Address (Hex) Description

00_0000–00_0003 Option Bits

00_0004–00_0007 RESET Vector

00_0008–00_000B System Exception Vector

00_000C–00_000F Reserved

00_0010–00_006F Interrupt Vectors
UM018807-0208 Address Space

ZNEO® CPU Core
User Manual

18
Internal RAM

Internal RAM is employed for data and stacks. However, internal RAM can also contain
program code for execution. Most ZNEO CPU devices contain some internal RAM.
The base (lowest address) and top (highest address) of internal RAM are a function of the
amount of internal RAM available.

To determine the amount and location of internal RAM, refer to the device-specific
product specification.

The ZNEO CPU assembler provides a configurable address range mnemonic (RAM) that
can be specified to locate data and (possibly) program elements in the RAM space
accessed using 16-bit addressing. For more details on data space and segment definitions,
refer to the assembler documentation.

I/O Memory

ZNEO CPU supports 8 KB (8,192 bytes) of internal I/O Memory space located at
addresses FF_E000H through FF_FFFFH (in the 24-bit address space). The I/O Memory
addresses are reserved for control of the ZNEO CPU, the on-chip peripherals, and the
I/O ports.

For descriptions of the peripheral and I/O control registers, refer to the device-specific
Product Specification. Attempts to read from unavailable I/O Memory addresses return
FFH. Attempts to write to unavailable I/O Memory addresses produce no effect.

The ZNEO CPU assembler provides a configurable address range mnemonic, IODATA,
that can be specified to locate an address in the reserved I/O Memory space or (if present)
external I/O configured in the adjacent 16-bit addressable memory space. For more details
on data space and segment definitions, refer to the assembler documentation.

I/O Memory Precautions
Some control registers within the I/O Memory provide read-only or write-only access.
When accessing these read-only or write-only registers, ensure that the instructions do not
attempt to read from a write-only register or, conversely, write to a read-only register.

External Memory

ZNEO CPU products support external data and address buses for connecting to additional
external memories and/or memory-mapped peripherals. The external addresses can be
used for storing program code, data, constants, stack, etc. The results of reading from or
writing to unavailable external addresses are undefined.

Note:

Note:
Address Space UM018807-0208

ZNEO® CPU Core
User Manual

19
The ZNEO CPU assembler’s EROM and ERAM address range mnemonics can be
configured to include external memory configured in 32-bit addressed memory.
These mnemonics can be used to locate data and program elements in non-volatile or
RAM memory, as required. For more information on data space and segment definitions,
refer to the assembler documentation.

Endianness

The ZNEO CPU accesses data in Big Endian order; which means the address of a
multi-byte Word or Quad points to the most significant byte (MSB). Figure 4 displays the
Endianness of the ZNEO CPU.

Figure 4. Endianness of Words and Quads

Bus Widths

The ZNEO CPU can access 8-bit or 16-bit wide memories. The data buses of the internal
non-volatile memory and internal RAM are 16-bits wide. The internal peripherals are a
mix of 8-bit and 16-bit peripherals. The external memory bus can be configured as an 8-bit
or 16-bit memory bus.

FF_0080H

FF_0081H

FF_0082H

FF_0083H

MSB

LSB

Address
of Quad

FF_0080H

FF_0081H

MSB

LSB
Address
of Word
UM018807-0208 Address Space

ZNEO® CPU Core
User Manual

20
If a 16-bit or 32-bit operation is performed on a 16-bit wide memory, the number of
memory accesses depends on the alignment of the address. If the address is even, a 16-bit
operation takes one memory access and a 32-bit operation takes two memory accesses.
If the address is odd (unaligned), a 16-bit operation takes two memory accesses and a
32-bit operation takes three memory accesses. Figure 5 displays this behavior for 16-bit
and 32-bit access.

Figure 5. Alignment of 16-Bit and 32-Bit Operations on 16-Bit Memories

MSB LSBFF_0080H FF_0081H

MSB

LSBFF_0082H

FF_0081H

Aligned 16-Bit Access

Unaligned 16-Bit Access

MSB
LSB

FF_0080H FF_0081H

FF_0082H FF_0083H

MSB

LSB

FF_0081H

FF_0082H FF_0083H

FF_0084H

Aligned 32-Bit Access

Unaligned 32-Bit Access

FF_0080H

FF_0083H

FF_0085H

FF_0080H
Address Space UM018807-0208

ZNEO® CPU Core
User Manual

21
Assembly Language Introduction
Assembly language uses mnemonic symbols to represent instruction opcodes. Operands
such as register names and immediate data is represented symbolically, numerically, as
expressions, or by labels defined elsewhere in the program.
Figure 6 displays a typical assembly language statement.

Figure 6. Example Assembly Language Statement

An assembly statement can include one or more the following elements:
• Label—An optional text string used to refer to this statement elsewhere in the

program. A string is considered a label definition if it is not an assembler keyword,
and it either begins a line or is followed by a colon. The label definition identifies the
address of the instruction that follows it.

• Instruction Mnemonic—The mnemonic code for the desired operation.

• Destination Operand—The destination location for the operation. In assembly,
the destination operand is always first if both operands are specified.

• Source Operand—The source location or immediate data for the operation.

• Comment—An optional text field ignored by the assembler. Comments are used to
describe the flow of a program so it is easier to understand and maintain later.

Instead of instruction mnemonics, some assembly statements contain assembler directives
(also called pseudo-ops), which are not translated into object code. Directives are used to
select memory segments, allocate storage in memory, define macros, and control the
assembly process.

LOOP: SUB R5, R7 ;Subtract

 Label
(Optional)

Instruction
Mnemonic

Destination
Operand

Source
Operand

Comment
(Optional)
UM018807-0208 Assembly Language Introduction

ZNEO® CPU Core
User Manual

22
Example Assembly Language Source
An assembly language program is written in a plain text file called as source file, which
contains a sequence of assembly language statements and directives.
Below is an example of an assembly source file:

SEGMENT NEAR_TEXT ; Directive to place the following statements
 ; in data (RAM space) memory

Str_Data: ; Make Str_Data label equal to current addr.
 DB "NEVAR" ; Directive to allocate and initialize data
 ; bytes

Str_Length EQU $ - Str_Data ; Equate Str_Length to current
assembly
; address ("$") minus Str_Data address.

Blank_Data: ; Allocate an uninitialized data block
 DS Str_Length ; that is the same size as the Str_Data block.

 SEGMENT CODE ; Directive to put the following statements in
 ; instruction (ROM space) memory
REVERSE: ; Routine to reverse a block of data
 LD R8, #Str_Data ; Load R8 with 1st address in Str_Data block
 LD R12, #Blank_Data+Str_Length ;Next addr. after Blank_Data
LOOP: ; Start of loop
 LD.UB R5,(R8++) ; Load byte pointed to by R8 into R5 LSB
 ; Increment R8 after load.
 LD.B (--R12),R5 ; Decrement R12, then
 ; Load byte pointed to by R12 with R5 LSB
 CP R12, #Blank_Data ; Did we write all the bytes?
 JP NZ,LOOP ; Repeat until Blank_Data block contains
 ; reversed copy of Str_Data bytes

For details on assembly instructions, see Instruction Set Reference on page 63.
For details on operand addressing and data sizes, see Operand Addressing on page 27.
For information on how program flow can be interrupted, see Interrupts on page 41,
System Exceptions on page 47, and Software Traps on page 51.
For details on assembly language syntax, expressions, directives, and using the assembler,
refer to the Zilog Developer Suite—ZNEO® CPU User Manual.
Assembly Language Introduction UM018807-0208

ZNEO® CPU Core
User Manual

23
 ZNEO CPU Instruction Classes

 ZNEO CPU instructions can be divided functionally into the following groups:
• Arithmetic (Table 6)

• Logical (Table 7)

• Bit Manipulation (Table 8)

• Rotate and Shift (Table 9)

• Load (Table 10)

• CPU Control (Table 11)

• Program Control (Table 12)
Tables 6 through 12 list the instructions for each group and the number of operands
required for each instruction. Some instructions appear in more than one table as
these instructions can be considered members of more than one category.
The abbreviations dst and src refer to destination and source operands, respectively.

Table 6. Arithmetic Instructions

Mnemonic Operands Instruction Description Page No

ADC dst, src Add with Carry 66

ADD dst, src Add 69

CP dst, src Compare 85

CPC dst, src Compare with Carry 88

CPCZ dst Compare to Zero with Carry 91

CPZ dst Compare to Zero 93

DEC dst Decrement 95

INC dst Increment 106

MUL dst, src Multiply (32 bit) 123

NEG dst Negate 125

SBC dst, src Subtract with Carry 147

SDIV dst, src Signed Divide (32 bit) 150

SMUL dst, src Signed Multiply (64 bit) 156

SUB dst, src Subtract 167

UDIV dst, src Unsigned Divide (32 bit) 178
UM018807-0208 Assembly Language Introduction

ZNEO® CPU Core
User Manual

24
UDIV64 dst, src Unsigned Divide (64 bit) 180

UMUL dst, src Unsigned Multiply (64 bit) 182

Table 7. Logical Instructions

Mnemonic Operands Instruction Description Page No

AND dst, src Logical AND 72

COM dst Complement 83

OR dst, src Logical OR 129

XOR dst, src Logical Exclusive OR 186

Table 8. Bit Manipulation Instructions

Mnemonic Operands Instruction Description Page No

TCM dst, src Test Complement Under
Mask

170

TM dst, src Test Under Mask 173

Table 9. Rotate and Shift Instructions

Mnemonic Operands Instruction Description Page No

RL dst Rotate Left 145

SLL dst, src Shift Left Logical 152

SLLX dst, src Shift Left Logical, Extended 154

SRA dst, src Shift Right Arithmetic 158

SRAX dst, src Shift Right Arithmetic,
Extended

160

SRL dst, src Shift Right Logical 162

SRLX dst, src Shift Right Logical, Extended 164

Table 6. Arithmetic Instructions (Continued)

Mnemonic Operands Instruction Description Page No
Assembly Language Introduction UM018807-0208

ZNEO® CPU Core
User Manual

25
Table 10. Load Instructions

Mnemonic Operands Instruction Description Page No

CLR dst Clear Value 81

EXT dst, src Extend Value 101

LD dst, src Load 113

LD cc dst Load Condition Code 119

LDES dst Load and Extend Sign
Flag

120

LEA dst Load Effective Address 121

LINK src Link Frame Pointer 122

POP dst Pop 133

POPF dst Pop Flags 135

POPM mask Pop Multiple 136

PUSH src Push 139

PUSHF src Push Flags 141

PUSHM mask Push Multiple 142

UNLINK Unlink Frame Pointer 184

Table 11. CPU Control Instructions

Mnemonic Operands Instruction Description Page No

ATM — Atomic Operation
Modifier

76

DI — Disable Interrupts 97

EI — Enable Interrupts 100

HALT — Halt Mode 103

NOFLAGS — No Flags Modifier 127

NOP — No Operation 128

STOP — Stop Mode 166
UM018807-0208 Assembly Language Introduction

ZNEO® CPU Core
User Manual

26
Table 12. Program Control Instructions

Mnemonic Operands Instruction Description Page No

BRK — On-Chip Debugger Break 77

CALL dst Call 78

CALLA dst Call Absolute 80

DJNZ dst, src Decrement, Jump if Nonzero 98

IRET — Interrupt Return 108

JP dst Jump 110

JPA dst Jump Absolute 111

JP cc dst Jump Conditional 112

RET — Return from Call 144

TRAP vector Software Trap 176
Assembly Language Introduction UM018807-0208

ZNEO® CPU Core
User Manual

27
Operand Addressing
Most ZNEO CPU instructions operate on one or two registers, or one register and one
memory address. Operands following the instruction specify which register or memory
address to use.

Example
The below assembly language statement loads one 32-bit register with data from another:

 LD R7, R8

The first operand almost always specifies the destination, and the second operand (if any)
specifies the source for the operation. In this example, the R7 register is loaded with the
value from R8 register.
There are four kinds of operand addressing:
• Immediate Data—The value specified by the operand is used for operation.

• Register Addressing—The specified 32-bit register is used for operation.

• Direct Memory Addressing—The value specified by the operand addresses a memory
location that is used for the operation. This section introduces the following topics:
– Memory Data Size
– Resizing Data

These topics also apply to Register-Indirect memory addressing.

• Register-Indirect Memory Addressing—The specified 32-bit register and optional
offset point to a memory location that is used for the operation. This section covers the
following topics specific to register-indirect addressing:
– Loading an Effective Address
– Using the Program Counter as a Base Address
– Memory Address Decrement and Increment
– Using the Stack Pointer (R15)
– Using the Frame Pointer (R14)

This chapter also describes Bit Manipulation on page 38 and Jump operands in Jump
Addressing on page 40.
UM018807-0208 Operand Addressing

ZNEO® CPU Core
User Manual

28
Immediate Data

An Immediate Data operand specifies a source value to be used directly by the instruction.

Example
Below assembly language statement loads ALU register R7 with the value 42H:

 LD R7, #42H

The hash mark prefix (#) on the second (source) operand indicates to the assembler that
the value is Immediate Data, so this example loads the R7 register with the value 42H.
Immediate data is stored as part of the instruction opcode. Depending on the opcode,
an immediate data value can be of the same size as the destination (8, 16, or 32 bits), or it
may contain fewer bits to shorten the opcode.
A destination-sized immediate operand (“imm” syntax symbol) is used directly by the
operation. A shorter immediate operand must be considered signed (“simm”) or unsigned
(“uimm”). A signed immediate value is sign-extended to the destination size before it is
used. An unsigned immediate operand is zero-extended to the destination size before it is
used. For more information, see Memory Data Size on page 30 and Resizing Data on
page 31.
An immediate value does not address data memory, so it cannot be used as the destination
operand. Immediate data is read by the Fetch Unit, so it is not affected by the constraints
described in I/O Memory Precautions on page 18.
Operand Addressing UM018807-0208

ZNEO® CPU Core
User Manual

29
Register Addressing

A Register operand specifies a 32-bit Arithmetic and Logic Unit (ALU) register to be used
with the instruction. ALU registers are the CPU’s high-speed work space, much faster than
ordinary internal or external memory. There are 16 ALU registers, named R0 to R15.
See ALU Registers on page 4 for details.
As mentioned previously, the following assembly language statement loads the destination
register, R7, with data from the source register, R8:

 LD R7, R8

Depending on the instruction, a register name can be used for either the source or
destination operand, or both. Each register is 32-bits (four bytes) wide, and all 32 bits of a
register are used unless the register’s value is loaded into an 8-bit or 16-bit memory
location.
The ZNEO CPU assembler recognizes FP as a synonym for R14 and SP as a synonym for
R15. For details, see Using the Frame Pointer (R14) on page 37 and Using the Stack
Pointer (R15) on page 36. The UDIV64 instruction uses a 64-bit “RRd” register pair
operand that employs two 32-bit ALU registers. See UDIV64 on page 180 for details.

Direct Memory Addressing

A Direct Memory operand specifies a memory address to be used by the instruction.

Example
The following assembly language statement loads ALU register R7 with the value in
memory address 0000_B002H:

 LD.SB R7, B002H

Any data operand which does not contain an immediate value (#n) or register name (Rn) is
assumed to be a memory address. Depending on the instruction, a direct memory address
can be used in either the source or destination operand, but a destination’s effective
address must be a writable memory or I/O location.
ZNEO CPU uses 32-bit memory addresses, but it includes instruction opcodes which
accept 16-bit addresses. A 16-bit address operand in object code is sign-extended by the
CPU (see Resizing Data on page 31) to create the effective address used. This feature
splits the 16-bit address range between the highest and lowest 32K blocks of the 16 GB
address space. Table 13 provides the 16-bit address ranges for object code.
UM018807-0208 Operand Addressing

ZNEO® CPU Core
User Manual

30
Effective addresses are expressed as 32-bit values. Current devices ignore address bits
[31:24], providing a 24-bit address space.

Internal RAM and I/O memory falls in the range FFFF_8000H to FFFF_FFFFH
(FF_8000H to FF_FFFFH on devices that ignore address bits [31:24]), so 16-bit
addressing provides efficient access to internal RAM and I/O memory.
The ZNEO CPU assembler does not automatically use 16-bit addressing if an unmodified
16-bit address is specified, as in the previous example. In this case the assembler selects
16-bit or 32-bit addressing to ensure the address is used as specified.
However, you can append address range mnemonics to specify whether the assembler
should use 16-bit or 32-bit addressing. The RAM, IODATA, and ROM mnemonics tell the
assembler to use 16-bit addressing, as shown in the following example statements:

 LD.SB R7, B002H:RAM ; Effective address is FFFF_B002H
 LD.SB R7, E002H:IODATA ; Effective address is FFFF_E002H
 LD.SB R7, 3002H:ROM ; Effective address is 0000_3002H

The ERAM and EROM address space suffixes tell the assembler to use 32-bit addressing,
as shown in the following statements. A full 32-bit address can access external memory or
memory-mapped I/O anywhere in the 4 GB address space.

 LD.SB R7, B002H:EROM ; Effective address is 0000_B002H
 LD.SB R7, B002H:ERAM ; Effective address is 0000_B002H

The assembler uses memory space mnemonics only to select an appropriate address size
(16 or 32 bit). The assembler does not check an absolute address to make sure it actually
resides in the specified space, but the assembler generates a warning if a label is used in a
space other than the space in which it was declared. See Address Space on page 15 for
more information about memory spaces.

Memory Data Size
The ZNEO CPU’s default data size is 32 bits (Quad). Any instruction that addresses an
8-bit or 16-bit value in memory must use a mnemonic suffix to specify the data size. The
previous examples use the ‘.B’ suffix to tell the CPU that only 8 bits (one byte) must be
loaded. The following data size suffixes can be used (using LD as an example):
• LD (No Suffix)—Read or write 32 bits (four bytes). In a read, for example, the byte

at the specified effective address loads into bits [31:24] of the destination register.

Table 13. 16-Bit Addressing (Object Code Only)

16-Bit Address Range 32-Bit Effective Addresses Memory Space

0000H to 7FFFH 0000_000H to 0000_7FFFH ROM

8000H to FFFFH FFFF_8000H to FFFF_FFFFH RAM and I/O

Note:
Operand Addressing UM018807-0208

ZNEO® CPU Core
User Manual

31
The three subsequent memory bytes load into bits [23:16], [15:8], and [7:0] of the
destination register, in that order.

• LD.W—Read or write 16 bits (two bytes). In an unsigned read, for example, bits
[31:16] of the destination register are cleared, the byte at the specified effective
address loads into bits [15:8] of the register, and the byte at the next (+1) address
loads into bits [7:0] of the register.

• LD.B—Read or write 8 bits (one byte). In an unsigned read, for example, bits [31:8]
of the destination register are cleared, and the byte at the specified effective address
loads into bits [7:0] of the register.

Figure 7 on page 31 displays the mapping of register bytes to memory bytes for different
data sizes. When 8-bit or 16-bit memory is read or written, the high-order bits are filled or
truncated as described in Resizing Data on page 31.

Figure 7. Mapping of Register to Memory Bytes

Resizing Data
When an 8-bit or 16-bit memory location is written, the value from the source register
is truncated, so only the least-significant 8 or 16 bits of the register value are written,
respectively. The source register itself is not changed. When an 8-bit or 16-bit memory
location is read, the value from memory must be extended to a full 32 bits before it is used
or stored in a register.

ALU Registers Memory Space

7:015:823:1631:24Bits:

FFFF_7005H

(Effective Address)

FFFF_7006H

FFFF_7007H

FFFF_7004H

7:015:823:1631:24Bits:

FFFF_7009H

(Effective Address)FFFF_7008H

7:015:823:1631:24Bits:

FFFF_700AH (Effective Address)
8-Bit

16-Bit

32-Bit
UM018807-0208 Operand Addressing

ZNEO® CPU Core
User Manual

32
One of the following two kinds of data extension must be used:
• Unsigned (Zero) Extension—The upper bits of the new 32-bit value are filled with

zeros. Unsigned extension is invoked by including a ‘U’ in the mnemonic suffix.
For example, the following instruction loads the byte at FFFF_7002H into R10[7:0]
and fills R10[31:8] with zeros:

 LD.UB R10,7002H

• Signed Extension—The upper bits of the new 32-bit value are filled with ones or
zeros, depending on the source value’s most-significant (sign) bit. This preserves the
sign of the loaded value. Signed extension is invoked by including an ‘S’ in the mne-
monic suffix.

For example, the following instruction loads the byte at address FFFF_7002H into register
bits R10[7:0] and copies bit 7 of that byte into each bit of R10[31:8].

 LD.SB R10,7002H

By default, the ZNEO CPU assembler uses an unsigned instruction opcode if the
extension type is not specified for an 8- or 16-bit memory read. The EXT instruction is
provided for extending 8-bit or 16-bit values contained in a register.
The CPU uses ordinary two’s complement notation to represent signed values. In this
notation, the negative of a number is its binary complement, plus one. The most
significant bit (msb) represents the sign—a one in the msb indicates the number is
negative.
You can use signed or unsigned instructions with a particular memory location. Ensure the
correct usage of extension type whenever a memory location is read.
Table 14 lists data sizes, suffixes, and ranges for signed and unsigned values.

Table 14. Data Sizes for Memory Read

Size Bits Signed or Unsigned Mnemonic Suffix Range (Hex) Range (Decimal)

 Byte 8 Unsigned .UB 0 to FF 0 to 255

Signed .SB 80 to FF,
00 to 7F

–128 to –1,
0 to 127

 Word 16 Unsigned .UW 0 to FFFF 0 to 65,535

Signed .SW 8000 to FFFF,
0000 to 7FFF

–32,768 to –1,
0 to 32,767

 Quad 32 Unsigned (none) 0 to FFFF_FFFF 0 to 4,294,967,295

Signed (none) 8000_0000 to
FFFF_FFFF,
0000_0000 to
7FFF_FFFF

–2,147,483,648 to
–1,
0 to 2,147,483,647
Operand Addressing UM018807-0208

ZNEO® CPU Core
User Manual

33
Register-Indirect Memory Addressing

A register-indirect operand uses an address contained in an ALU register, plus an optional
offset, to address data in a memory location.

Example
The following assembly-language statement loads the destination register, R10, with data
from a memory byte pointed to by register R12, plus an offset.

 LD.UB R10, 4(R12)

Figure 8 displays this example. It reads a base address value from R12, adds the signed
offset, 4, to create an effective address in memory, and then loads register R10 with the
value at that address. The parentheses indicate a register-indirect operand.

Figure 8. Register-Indirect Memory Addressing Example

Depending on the instruction, register-indirect addressing can be used for either the source
or destination operand, but a destination’s effective address must be a writable memory or
I/O location. The range allowed for the signed offset depends on the instruction used. For
the LD, CLR, CPZ, CPCZ, INC, and DEC instructions, the register-indirect offset range is
–4,096 to +4,095. For other instructions that accept an indirect offset, the range is –8,192
to +8,191.

For allowed JP and CALL offsets, see Jump Addressing on page 40.

Several register-indirect instructions have alternate opcodes that do not accept an offset,
and therefore use fewer opcode words. When the offset is omitted in a register-indirect
operand, the ZNEO CPU uses the shorter instruction opcode if one is available.

LD.UB R10,4(R12)

42HFFFF_7006H

R12FFFF_7002H

4 + FFFF_7002H 32-Bit ALU Registers

Memory Space

Value Loaded: 42H—

—

R11—

R13—

0000_0042H R10

(Effective Address)

Note:
UM018807-0208 Operand Addressing

ZNEO® CPU Core
User Manual

34
Loading an Effective Address
The following assembly language statement is a an example of how you can initialize a
register with a base address:

 LD R6, #FFFFB002H

Addresses in the range FFFF_8000H to FFFF_FFFFH are common because that is where
I/O memory and internal RAM are addressed, but using a 32-bit LD to initialize a register
is not necessary. The ZNEO® CPU assembler automatically uses a shorter LD opcode if
possible.
The LEA mnemonic is provided as an alternative to the immediate LD instruction.

Example
The following statement performs the same initialization as in the previous example:

 LEA R6, FFFFB002H

LEA and LD accept the memory space notation described in Direct Memory Addressing
on page 29, so the following statements are equivalent to the two previous examples:

 LEA R6,B002H:RAM ; Load address of FFFF_B002H
 LEA R7,B002H:RAM ; Load address FFFF_B002H

Once a register is initialized with a base address, the LEA instruction can be used to
generate a new effective address based on that register value.

Example
If the value in register R8 is FFFF_7002H, the following assembly language statement
loads register R7 with the value FFFF_7006H:

 LEA R7, 4(R8)

This LEA operation loads the effective address indicated by the source operand, while a
similar LD instruction would load the contents of the address. The allowed offset range for
a register-based LEA operand is –8,192 to +8,191.

Using the Program Counter as a Base Address
Some LD and LEA instructions use the Program Counter (PC) as the base address for
indirect addressing with an offset. Normally these instructions are used to access a data
block declared in line with the program.
For example, the following statements declare a variable and load it into register R7:

DATA: DB 00H, 00H, 00H, 42H
 LD R7, DATA(PC)
Operand Addressing UM018807-0208

ZNEO® CPU Core
User Manual

35
The ZNEO CPU assembler automatically calculates the correct relative offset to access
the labeled address using PC as a base address. If a constant (non-label) offset is used with
PC in assembly language, the assembler measures the offset from the start of the current
instruction. The actual offset used in object code is a signed 14-bit value measured from
the end of the current instruction, but the assembler makes this adjustment automatically.
A program can use LEA to load the actual PC contents into a register. The following
statements both load the PC value (the next instruction’s address) into register R5:

 LEA R5, NEXT(PC)
NEXT: LEA R5, 4(PC)

A PC-based address cannot be used for the destination operand. The allowed offset range
for a PC-based LD or LEA operand is –8,192 to +8,191.

Memory Address Decrement and Increment
In certain circumstances, a register-indirect LD operation can automatically decrement or
increment the base address register. A decrement is selected by adding a ‘--’ (double-
minus) prefix to the destination register name. The decrement always takes place before
the load is performed. This is called predecrement.

Example
The following statement decrements the base address in register R5, then loads the
memory location pointed to by R5 with the 32-bit contents of R6:

 LD (--R5), R6

Predecrement is supported only for destination operands. An LD store using predecrement
is similar to a PUSH, except the LD mnemonic allows a value in any register to be used as
the base address (See Using the Stack Pointer (R15) on page 36 for more information).
An increment is selected by adding a ‘++’ (double-plus) suffix to the source or destination
register name. The increment always takes place after the load is performed. This is called
postincrement.

Example
The following statement loads the memory location pointed to by register R5 with the
contents of R6, then increments the base address in R5:

 LD (R5++), R6

Postincrement can also be used for source operands. For example, the following statement
loads register R6 with the contents of the memory location pointed to by R5, then
increments the base address in R5:

 LD R6, (R5++)
UM018807-0208 Operand Addressing

ZNEO® CPU Core
User Manual

36
An LD read using postincrement is similar to a POP, except the LD mnemonic allows a
value in any register to be used as the base address. The predecrement and postincrement
features can be used to implement high-level stack data structures independent of the
Stack Pointer. To help ensure that the next base address is valid, the increment or
decrement amount varies with the size of the LD operation.
This is illustrated in the following example statements:

 LD.B (--R5), R6 ; Decrement R5 by 1 and store 1 byte
 LD.W (--R5), R6 ; Decrement R5 by 2 and store 2 bytes
 LD (--R5), R6 ; Decrement R5 by 4 and store 4 bytes

Predecrement or postincrement operands cannot include an offset.

Using the Stack Pointer (R15)
Stack operations are a special kind of register-indirect memory access. The ZNEO CPU
system stack is implemented using ALU register R15 as the Stack Pointer (SP). R15 can
be addressed like any register, but because of its Stack Pointer role it would be awkward to
use for any other purpose. The ZNEO CPU assembler recognizes SP as a synonym for
R15.
The system program startup routine initializes R15 to point to the highest address in
internal RAM, plus 1. Subsequent PUSH, PUSHM, CALL, and LINK instructions;
interrupts, system exceptions, and traps all decrement SP before they store data on the
stack. POP, POPM, RET, UNLINK, and IRET instructions all increment SP to release
stack space as it is no longer needed. A program can also allocate or release stack
space by changing the register R15 (SP) value directly.
A system exception is provided to help keep the stack from overwriting other data; see
Stack Overflow on page 48. Software can use the PUSH, POP, PUSHM, and POPM
instructions to store and retrieve data from the stack.
PUSH decrements SP and stores the source value onto the stack. POP loads the last
value on the stack into the specified register and increments SP. The assembler uses
predecrement and postincrement LD opcodes to implement most PUSH and POP
instructions. PUSH and POP can be used with 8-, 16-, or 32-bit data sizes. 8-bit and 16-bit
POP instructions can be either Unsigned or Signed.
When a 16-bit or 32-bit value is pushed onto the stack, the low-order bytes are pushed first
to store the value in the ZNEO CPU’s normal big-endian fashion.

Example
A 16-bit value is stored with bits [7:0] in the value’s higher-addressed byte, and bits [15:8]
in the value’s base address byte.
If the stack is located on a 16-bit bus, an assembly language program might improve stack
performance by maintaining an even SP value—for example, by avoiding the single-byte
PUSH.B and POP.B instructions. This may require some effort, especially if the program
includes compiled C routines or any other code that does not preserve stack alignment.
Operand Addressing UM018807-0208

ZNEO® CPU Core
User Manual

37
The PUSHM and POPM instructions push or pop multiple registers with a single
instruction. For example, the following statements push R0, R5, R6, R7 and R13 onto the
stack (in reverse numerical order), and then pop the same registers (in numerical order, so
pushes and pops remain symmetrical):

 PUSHM <R0, R5-R7, R13>
 POPM <R0, R5-R7, R13>

The PUSHM and POPM instructions always push or pop all 32 bits of each register.
The ZNEO CPU assembler uses the PUSHMHI, PUSHMLO, POPMLO, and POPMHI
opcodes to implement PUSHM and POPM.

Using the Frame Pointer (R14)
Subroutines often use the stack for temporary variable space. For example, a CALL
sequence begins by pushing arguments onto the stack before calling the subroutine.
When the subroutine starts, it stores a copy of SP in another register called the Frame
Pointer (FP) and decrements SP to create stack space for local variables. When the
subroutine is finished, it copies FP back into SP and returns. Finally, the calling routine
deallocates the stack space it used for arguments.
The ZNEO CPU provides the LINK and UNLINK instructions to help program this
sequence. These instructions use register R14 as the FP register. The ZNEO CPU
assembler recognizes FP as a synonym for R14.
LINK is used at the beginning of a subroutine to copy the SP contents to FP and decrement
SP as needed. UNLINK copies FP back to SP, releasing the allocated space. LINK pushes
R14 on the stack before changing it, and UNLINK pops R14 after it is done, so routines
not using LINK or UNLINK can use R14 normally.
While the subroutine executes, it can access its arguments and variables using register-
indirect addressing with the FP register. For constant (non-label) offsets in the range –32
to +31, the assembler uses special opcodes that make FP-based accesses more efficient.
UM018807-0208 Operand Addressing

ZNEO® CPU Core
User Manual

38
Bit Manipulation

The ZNEO CPU does not provide any special instructions to address only one bit in
memory, but individual bits are easily manipulated using masked logical instructions.
The following sections introduce the most basic bit manipulation techniques.
The instructions used here are AND, OR, TM, and TCM. Other useful bit, logic,
and shift operations are listed by groups in ZNEO CPU Instruction Classes on page 23.

Clearing Bits (Masked AND)
The logical AND instruction (see page 72) stores a 1 bit only if the corresponding bit is set
in both the source and destination. In effect, if the source (mask) bit is 0, the destination bit
is cleared. If the mask bit is 1, the destination bit is not changed.

Example
The following assembly language statements initialize register R15 and then clear bit 5 of
that register:

 LD R15, #FFFFFF70H ; LSB = 0111_0000B
 AND R15, #FFFFFFDFH ; Clear R15 bit 5

This leaves the value FFFF_FF50H in register R15. Figure 9 displays how this example
clears only one bit of register R15.

Figure 9. Masked Logic Example—Clearing a Bit

Setting Bits (Masked OR)
The logical OR instruction stores a 0 bit only if the corresponding bit is clear in both the
source and destination. In effect, if the source (mask) bit is 1, the destination bit is set. If
the mask bit is 0, the destination bit is not changed.

0 1 1 1 0 0 0 0 R15[7:0] = 70H

1 1 0 1 1 1 1 1 MASK = FFFF_FFDFH

0 1 0 1 0 0 0 0 R15[7:0] = 50H

Bit
5

Bit
32

AND R15, #FFFFFFDFH ; Clear Bit 5 of Register 15

1 1 1 1 1 1 1 11 1 1 1 1 1 1 11 1 1 1 1 1 1 1

Bit
0

1 1 1 1 1 1 1 11 1 1 1 1 1 1 11 1 1 1 1 1 1 1

1 1 1 1 1 1 1 11 1 1 1 1 1 1 11 1 1 1 1 1 1 1
Operand Addressing UM018807-0208

ZNEO® CPU Core
User Manual

39
Example
The following assembly language statements initialize register R15 and then set bits [2,1]
of that register:

 LD R15, #00000070H ; LSB = 0111_0000B
 OR R15, #00000006H ; Set R15 bits 1 and 2

This leaves the value 0000_0076H (LSB = 0111_0110B) in register R15.

Testing Bits (TM and TCM)
The TM instruction performs an internal AND to test mask-selected bits in the destination
register, but does not changes the source or destination register contents. Instead, TM sets
the Z flag if the tested destination bits
are all 0.
To select a bit to test, set the corresponding bit in the source (mask) operand as given in
the example below.

Example
The following assembly language statements initialize register R15 and then test bit 2 of
that register:

 LD R15, #00000070H ; LSB = 0111_0000B
 TM R15, #00000004H ; Test bit 2
 JP Z, BIT_IS_CLEAR

This leaves R15 unchanged, but sets the Z flag as R15[2] is clear.
The TCM instruction (Test Complement under Mask, see page 170) complements the
destination value before ANDing it to the mask. In effect, TCM is identical to TM except
it sets the Z flag if the tested destination bits are all 1.

Example
The following assembly language statements initialize register R15 and then test bits [2,1]
of that register:

 LD R15, #00000070H ; LSB = 0111_0000B
 TCM R15, #00000006H ; Test bits 1 and 2
 JP Z, BITS_ARE_ONES

This leaves R15 unchanged, but clears the Z flag because neither bit R15[2,1] is 1.
UM018807-0208 Operand Addressing

ZNEO® CPU Core
User Manual

40
Jump Addressing

The ZNEO CPU jump instructions (JP and CALL), are used to alter the program flow.
These instructions alter the Program Counter, which indicates the next instruction to be
fetched. A few considerations are provided below:
• All instructions must begin on an even address.

• Instruction fetches bypass the internal I/O space. The result of an instruction fetch is
not defined in the range FFFF_E000H–FFFF_FFFFH (FF_E000H–FF_FFFFH on
devices that ignore address bits [31:24]).

• A small device-specific address block starting at 0000_0000H is reserved for CPU
option bits and interrupt, trap, or exception vectors.

For details on option bits and vectors, refer to the device-specific Product Specification.

Assembly language statements use a label, expression, or numeric value to indicate the
32-bit jump destination. The ZNEO CPU assembler analyzes the address and determines
the best address mode to use in the assembled object code.
In object code, following two jump address modes are available:
• Direct Address—The JP, JP cc, or CALL opcode includes four operand bytes con-

taining the 32-bit jump destination address. The destination address is written directly
to the Program Counter to indicate the next instruction. Bit [0] of the operand is
ignored.

• Relative Address—The JP, JP cc, or CALL opcode includes a signed relative offset
field of 8, 12, 16, or 24 bits, which is added to the Program Counter’s contents.
Table 15 provides the relative address operand ranges. For jumps within the same
module, the assembler uses the most efficient offset size. For relative jumps across
modules, the assembler uses a default offset size that can be configured at assembly
time.

Table 15. Relative Jump Offset Ranges

Operand Bits Offset Range

8 –128 to +127

12 –2,048 to +2,047

16 –32,768 to +32,767

24 –8,388,608 to +8,388,607

Note:
Operand Addressing UM018807-0208

ZNEO® CPU Core
User Manual

41
Interrupts
Peripherals use an interrupt request (IRQ) signal to get the CPU’s attention when it needs
to perform some action, such as moving peripheral data or exchanging status and control
information.
There are two ways to handle interrupt requests:
• Vectored Interrupts—Asserting the IRQ signal forces the CPU to execute the

corresponding interrupt service routine (ISR). The ISR must end with an Interrupt
Return (IRET) instruction.

• Polled Interrupts—Vectored interrupts are disabled (globally or only for the device),
and the software tests the device’s interrupt request bits periodically. If action is
required, the software uses CALL and RET to invoke the appropriate service routine.

Interrupts are generated by internal peripherals, external devices (through the port pins),
or software. The Interrupt Controller prioritizes and handles individual interrupt requests
before passing them to the ZNEO CPU. The interrupt sources and trigger conditions are
device dependent.

To determine available interrupt sources (internal and external), triggering edge options,
and exact programming details, refer to the device-specific Product Specification.

Vectored Interrupts

Each ZNEO CPU interrupt is assigned an interrupt vector that points to the appropriate
service routine for that interrupt. Vectors are stored in a reserved block of 4-byte memory
quads in the non-volatile memory space. Each interrupt vector is a 32-bit pointer (service
routine address) stored in a memory quad.

For interrupt vector locations, refer to the device-specific Product Specification.

Interrupt Enable and Disable
Vectored interrupts are globally enabled and disabled by executing the Enable Interrupts
(EI) and Disable Interrupts (DI) instructions, respectively. These instructions affect the
Master Interrupt Enable flag (IRQE) in the FLAGS register in I/O memory. It is possible
to enable or disable interrupts by writing to the FLAGS register directly. You can enable or
disable the individual interrupts using control registers in the Interrupt Controller.

For information on the Interrupt Controller, refer to the device-specific Product
Specification.

Note:

Note:

Note:
UM018807-0208 Interrupts

ZNEO® CPU Core
User Manual

42
Interrupt Processing
When an enabled interrupt occurs, the ZNEO CPU performs the following tasks to pass
control to the corresponding interrupt service routine:
1. Push the Flags register, including the Master Interrupt Enable bit (IRQE), onto

the stack.

2. Push 00H (so SP alignment is not changed).

3. Push PC[7:0] (Program Counter bits [7:0]) onto the stack.

4. Copy the state of the IRQE flag into the Chained Interrupt Enable flag (CIRQE).

5. Push PC[15:8] onto the stack.

6. Push PC[23:16] onto the stack.

7. Push PC[31:24] onto the stack.

8. Disable interrupts (clear IRQE).

9. Fetch interrupt vector bits [31:24] into PC[31:24].

10. Fetch interrupt vector bits [23:16] into PC[23:16].

11. Fetch interrupt vector bits [15:8] into PC[15:8].

12. Fetch interrupt vector bits [7:0] into PC[7:0].

13. Begin execution at the new Program Counter address specified by the Interrupt
Vector.

Figure 10 displays the effect of vectored interrupts on the Stack Pointer and the contents of
the stack.

Figure 10. Effects of an Interrupt on the Stack

Top of StackStack Pointer

FLAGS[7:0]

PC[15:8]

PC[7:0]

Stack Pointer

Stack Pointer and Stack
Before an Interrupt

Stack Pointer and Stack
After an Interrupt

PC[23:16]

PC[31:24]

00H

—

Interrupts UM018807-0208

ZNEO® CPU Core
User Manual

43
Example
Figure 11 displays an example of addresses used during an interrupt operation. In this
example, the interrupt vector quad address is 0000_0014H. The 32-bit interrupt vector
address contained by that quad (0023_4567H) is loaded into the Program Counter.
The execution of the interrupt service routine begins at 0023_4567H.

Figure 11. Interrupt Vectoring Example

Returning From a Vectored Interrupt
If no interrupts are pending or the Chained Interrupt Enable Flag (CIRQE) is 0, executing
the Interrupt Return (IRET) instruction at the end of an interrupt service routine results in
the following operations:
1. Pop PC[31:24] from the stack.

2. Pop PC[23:16] from the stack.

3. Pop PC[15:8] from the stack.

Memory

Interrupt Vector Quad Interrupt
Vector
Table

Interrupt Service
Routine First

Vector[23:16] = 23H
Vector[15:8] = 45H

0023_4567H

0000_0014H

0000_0015H

Vector[7:0] = 67H
0000_0016H

0000_0017H

Vector[31:24] = 00HQuad Base Address

Address

Instruction
UM018807-0208 Interrupts

ZNEO® CPU Core
User Manual

44
4. Pop PC[7:0] from the stack.

5. Increment SP by 1 (so SP alignment is not changed).

6. Pop the Flags register, including the Master Interrupt Enable bit (IRQE), from the
stack. This returns the IRQE bit to its state before the interrupt occurred (assuming the
contents of the stack are not altered by the interrupt service routine).

7. Begin execution at the new Program Counter address.
If the CIRQE flag is 1 and one or more vectored interrupts are pending, executing the IRET
instruction results in the following operation:
1. Disable interrupts (clear the IRQE flag).

2. Load the Program Counter directly from the vector table quad for the highest-priority
pending interrupt.

3. Begin execution at the new Program Counter address.
This chained-interrupt optimization omits unneeded pop and push cycles when program
control passes directly from one interrupt service routine to another.
Whenever a vectored interrupt or system exception occurs, the previous state of the IRQE
flag is copied to the CIRQE flag after the Flags register is pushed onto the stack.
This disables interrupt chaining if interrupts are globally disabled (IRQE=0) when a
nonmaskable interrupt or system exception occurs.

Programs that branch to interrupt service routines directly—for example, by executing
a PUSHF followed by a CALL—must set or clear the CIRQE flag to enable or disable
interrupt chaining, respectively. Otherwise, the IRET that ends the routine might chain
to another interrupt unexpectedly.

The following assembly language statements clear the CIRQE flag:
LD.UB R5, FLAGS ;Read the current FLAGS value

AND R5, #11111101B ;Clear bit 1 (CIRQE)

LD.B FLAGS, R5 ;Write back with CIRQE flag cleared

Interrupt Priority and Nesting
The Interrupt Controller assigns a specific priority to each IRQ signal. When two IRQ
signals are asserted at the same time, the higher priority interrupt service routine is
executed first. An interrupt service routine enables the vectored interrupt nesting, which
allows higher priority requests to interrupt the request being serviced.
Follow the steps below during the interrupt service routine to enable vectored interrupt
nesting:
1. Push the current value of the Interrupt Enable Registers in I/O memory onto the stack.

2. Configure the Interrupt Enable Registers to disable lower priority interrupts.

Caution:
Interrupts UM018807-0208

ZNEO® CPU Core
User Manual

45
3. Execute an EI instruction to enable vectored interrupts.

4. Proceed with the interrupt service routine processing.

5. After processing is complete, execute a DI instruction to disable interrupts.

6. Restore the Interrupt Enable Registers values from the stack.

7. Execute an IRET instruction to return from the interrupt service routine.

For information on Interrupt Priority and Interrupt Enable Registers, refer to the
device-specific Product Specification.

Software Interrupt Generation
Software can generate a vectored interrupt request directly by writing to the Interrupt
Request Registers in I/O memory. The Interrupt Controller and CPU handle software
interrupts in the same manner as hardware-generated interrupt requests.
To generate a Software Interrupt, write 1 to the appropriate interrupt request bit in the
selected Interrupt Request Register.

Example
The following instruction writes 1 to Bit 5 of Interrupt Request Register 1 (IRQ1SET):

 LD R5, #00100000B ; Load mask for bit 5

 OR.B IRQ1SET:IODATA, R5 ; Set interrupt request bit 5

If an interrupt at Bit 5 is enabled and there are no higher priority interrupt requests
pending, program control gets transferred to the interrupt service routine specified by
the corresponding interrupt vector.

For more information on the Interrupt Controller and Interrupt Request Registers, refer to
the device-specific Product Specification.

Polled Interrupts

The ZNEO CPU supports polled interrupt processing. Polled interrupts are used when it is
not desirable to enable vectored interrupts for one or more devices. If interrupts are
disabled for a device (or globally), no action is taken after the device asserts its IRQ signal
unless software explicitly polls (tests) the corresponding interrupt bit.
Polling is done in a frequently-executed section of code, such as the ‘main loop’ of an
interactive program. For processor-intensive applications, there can be a trade-off between
the responsiveness of polled interrupts and the overhead of frequent polling.

Note:

Note:
UM018807-0208 Interrupts

ZNEO® CPU Core
User Manual

46
To poll the bits of interest in an Interrupt Request register, use the Test Under Mask (TM)
or similar bit test instruction. If the bit is 1, perform a software call or jump to the interrupt
service routine. The interrupt service routine must clear the Interrupt Request Bit (by
writing 1 to the bit) in the Interrupt Request Register and then return or branch back to the
main program.

Example
The following example outlines the sequence of a polling routine:

 INCLUDE "device.INC" ; Include device-specific label
 ; definitions

 LD R0, #00100000B ; Load mask for bit 5
 TM.B IRQ1, R0 ; Test for 1 in IRQ1 Bit 5
 JP Z, NEXT ; If no IRQ, go to NEXT
 CALL SERVICE ; If IRQ, call the interrupt
 ; service routine.
NEXT:
 ;Other program code here.

SERVICE: ; Process interrupt request
;Service routine code here.

 LD.B IRQ1, R0 ; Write a 1 to clear IRQ1 bit 5
 RET ; Return to address after CALL

You must not use IRET when returning from a polled interrupt service routine.

For information on the Interrupt Request Registers, refer to the device-specific
Product Specification.

Caution:

Note:
Interrupts UM018807-0208

ZNEO® CPU Core
User Manual

47
System Exceptions
System exceptions are similar to Vectored Interrupts but Exceptions are generated by the
CPU and cannot be masked or disabled. There are five ZNEO CPU events that generate
system exceptions:
• Program Counter Overflow

• Stack Overflow

• Divide-by-Zero

• Divide Overflow

• Illegal Instruction

It is possible for individual ZNEO CPU products to generate system exceptions in addition
to those listed above.

To determine if your device generates other system exceptions, refer to the device-specific
Product Specification.

Following a system exception, the Flags and Program Counter are pushed on the stack.
The Program Counter value that is pushed onto the stack points to the next instruction
(not the instruction that generated the system exception).
The system exception vector is stored in a reserved memory quad at 0000_0008H in the
non-volatile memory space. The vector is a 32-bit pointer (service routine address) stored
in the 4-byte quad. When an exception occurs, the vector replaces the value in the Program
Counter (PC). Program execution continues with the instruction pointed to by the new PC
value.

Symbolic Operation of System Exception
Below is the symbolic operation of the system exceptions:

SP ← SP – 1
(SP) ← Flags
SP ← SP – 5
(SP) ← PC
PC ← Vector

Program Counter Overflow

The Program Counter Overflow exception can be used to restrict program execution to the
memory space below a certain address. On each instruction fetch, the 32-bit PC value is
compared to the value in the Program Counter Overflow register (PCOV) in I/O memory.
If the PC value is greater than the PCOV value, a Program Counter Overflow system
exception is generated after the instruction fetch completes. After a Program Counter

Note:
UM018807-0208 System Exceptions

ZNEO® CPU Core
User Manual

48
Overflow occurs, the PCOVF bit in the System Exception register in I/O memory
(SYSEXCP) is set to 1. After the first PCOV exception has executed, no additional PCOV
exceptions are generated until the PCOVF bit is cleared. Writing 1 to the PCOVF bit clears
the bit to 0.

For detailed information regarding the System Exception register (SYSEXCP), refer to the
device-specific Product Specification.

The IRET instruction must not be used to end a PCOV exception service routine. After a
PCOV exception occurs, the Program Counter value on the stack points to an address
following the presumably invalid instruction that was fetched.

To set up Program Counter Overflow Protection, initialize PCOV to the highest address
that you intend to use for program instructions.

Stack Overflow

The Stack Overflow exception can be used to help restrict stack growth to the memory
space above a certain address. Whenever the register R15 Stack Pointer (SP) is changed,
its value is compared to the value in the Stack Pointer Overflow register (SPOV) in I/O
memory. If the SP value is less than the SPOV value, a Stack Pointer Overflow system
exception is generated after the current instruction completes.
After a Stack Pointer Overflow occurs, the SPOVF bit in the System Exception register in
I/O memory (SYSEXCP) is set to 1. After the first SPOV exception has executed, no
additional SPOV exceptions are generated until the SPOVF bit is cleared. Writing 1 to the
SPOVF bit clears the bit to 0.

For more information on the System Exception register (SYSEXCP), refer to the device-
specific Product Specification.

Follow the steps below to set up Stack Overflow Protection:
1. Initialize the Stack Pointer (SP) to its starting location (the highest RAM address +1).

2. Initialize SPOV to the lowest address to which it is safe for the stack to extend, minus
at least 12 bytes to allow room for interrupt completion.

An SPOV exception does not block writes to the stack. When initializing the SPOV
register, you must provide for at least 12 additional bytes of stack data that might be
written below the programmed address. This occurs if an interrupt generates a Stack
Overflow on the first byte it pushes. In this case the interrupt pushes 5 additional bytes
and the exception itself must push six more before the exception handler can start.
The 11-byte allowance described here is not sufficient if user code manipulates the Stack
Pointer (register R15), either directly or by using the LINK instruction. The allowance must
be increased to accommodate the largest expected decrement of SP.

Note:

Caution:

Note:

Caution:
System Exceptions UM018807-0208

ZNEO® CPU Core
User Manual

49
Divide-by-Zero

If the divisor is zero during execution of a divide instruction (UDIV or SDIV), the ZNEO
CPU generates a Divide-by-Zero system exception. After a Divide-by-Zero has occurred,
the DIV0 bit in the System Exception register in I/O memory (SYSEXCP) is set to 1. After
the first Divide-by-Zero system exception has executed, no additional Divide-by-Zero
system exceptions are generated until the DIV0 bit is cleared. Writing 1 to DIV0 clears the
bit to 0.

For more information on the System Exception register (SYSEXCP), refer to the device-
specific Product Specification.

Divide Overflow

If execution of a divide instruction (UDIV64) results in an overflow, the ZNEO CPU
generates a Divide Overflow system exception. After a Divide Overflow has occurred, the
DIVOVF bit in the System Exception register in I/O memory (SYSEXCP) is set to 1. After
the first Divide Overflow system exception has executed, no additional Divide Overflow
system exceptions are generated until the DIVOVF bit is cleared. Writing 1 to DIVOVF
clears the bit to 0.

For more information on the System Exception register (SYSEXCP), refer to the device-
specific product specification.

Illegal Instruction

If the Program Counter addresses any unimplemented opcode, the ZNEO CPU generates
an Illegal Instruction system exception. FFFFH is the default value of an unprogrammed
memory word, so the FFFFH opcode is defined as the Illegal Instruction Exception (ILL)
instruction.

The Break opcode (BRK, 0000H) operates as an ILL exception if On-Chip Debugger
(OCD) breaks are disabled. For details on the OCD, refer to the device-specific Product
Specification.

An illegal instruction invokes the System Exception vector at 0000_0008H in memory.
An ILL is similar to other system exceptions except the Program Counter does not
increment before it is pushed onto the stack, so the Program Counter value on the stack
points to the instruction that caused the exception.
After an illegal instruction exception occurs, the ILL bit in the System Exception register
in I/O memory (SYSEXCP) is set to 1. After the first ILL exception has executed,
additional ILL exceptions will not push the Program Counter again until the ILL bit is

Note:

Note:

Note:
UM018807-0208 System Exceptions

ZNEO® CPU Core
User Manual

50
cleared. Writing 1 to the ILL bit clears the bit to 0. For more information, see ILL
instruction description on page 104.

For more information on the System Exception register (SYSEXCP), refer to the device-
specific Product Specification .

An IRET instruction must not be performed to end an illegal instruction exception service
routine. As the stack contains the Program Counter value of the illegal instruction, the
IRET instruction returns the code execution to this illegal instruction.

Note:

Caution:
System Exceptions UM018807-0208

ZNEO® CPU Core
User Manual

51
Software Traps
The TRAP Vector instruction allows software to invoke any vectored service routine,
particularly software-defined traps. The TRAP instruction executes the pointed service
routine by the specified vector. Software traps use the same vector space as system
exceptions and interrupts. Like other vectors, the 32-bit trap vector value is stored in a
memory quad.
Possible vectors are numbered from 0 to 255 (0H to FFH). The possible vector space
includes memory quads 0000_0000H to 0000_03FCH. Each vector quad’s physical
address is 4 × Vector.

Example
The following instruction executes a software-defined service routine pointed to by Vector
255 stored in quad 0000_03FCH:

 TRAP #FFH

A software trap service routine must execute an IRET instruction to return from the trap.
Other vectors not used by the CPU or peripherals are available for software-defined traps.
For example, Vector 255 (vector quad 0000_03FCH) is initialized with a pointer to a user-
input error handling routine, which is then invoked by a TRAP FFH instruction.

For a list of vectors used by the CPU and internal peripherals, refer to the device-specific
Product Specification.

A TRAP instruction is used with exception or interrupt vectors but the TRAP instruction
does not sets any register bits in I/O memory that the corresponding service routine is
likely to inspect. For more information, see Software Interrupt Generation on page 45.
Some locations in the vector space may be reserved by the CPU for other uses. For
example, a typical ZNEO CPU uses the memory quad at 0000_0000H for option bits,
so Vectors 00 is not available for service routines. Software can use the instruction TRAP
#01 to invoke the RESET vector at 0000_0004H. For more information, see TRAP
instruction description on page 176.

Note:
UM018807-0208 Software Traps

ZNEO® CPU Core
User Manual

52
Software Traps UM018807-0208

ZNEO® CPU Core
User Manual

53
Instruction Opcodes
This chapter provides a complete list of ZNEO CPU instruction opcodes.
Each instruction opcode listed in this chapter consists of one, two, or three 16-bit words.
To abbreviate the listing, certain bit positions are represented symbolically by function.
Table 16 lists the bit field symbols used.

Table 16. Bit Field Symbols

Bit Character Meaning

1 Literal 1 bit.

0 Literal 0 bit.

o Binary operation (BOP) number: 000B=ADD, 001B=SUB,
010B=AND, 011B=OR, 100B=XOR, 101B=CP, 110B=TM,
111B=TCM.
Unary operation (UOP) number: 00B=CLR, 01B=CPZ,
10B=INC, 11B=DEC.

d Destination register number.

s Source register number.

m Register mask for PUSHM, POPM.

i Immediate operand bits.

c Condition code.

r Relative offset (in Words).

v Vector number.

w Select Word or Quad (0=16, 1=32 bits)

b Select Byte or Word (0=8 bits, 1=16 bits)

z Select extension (0=Unsigned, 1=Signed)

+ Select pointer predecrement or postincrement.
For a destination pointer: 0=predecrement,
1=postincrement.
For a source pointer: 0=no increment, 1=postincrement

x Don't care digit (ignored by CPU).
UM018807-0208 Instruction Opcodes

ZNEO® CPU Core
User Manual

54
Table 17 lists the abbreviations used in place of register names or explicit values in this
chapter. Normal assembly syntax for operands is described in Operand Addressing on
page 27.

Table 18 lists instructions by opcode. Unimplemented opcodes are shaded in grey.

Table 17. Operand Symbols

Operand Abbreviation Meaning

addr16, addr32 16- or 32-bit direct address.

cc4 4-bit condition code.

imm32 Immediate destination-sized operand with the specified
number of bits.

uimm8 Unsigned immediate short operand with the specified
number of bits.

simm16 Signed immediate short operand with the specified number
of bits.

mask Register mask (list of ALU registers).

vector8 8-bit vector number.

Rs Source register name.

Rd Destination register name.

src Source operand.

dst Destination operand.

soff14, soff13, soff6 Signed indirect address (pointer) offset.

rel Relative jump offset.

Table 18. ZNEO CPU Instructions Listed by Opcode

Opcode Format Instruction, Operands Description

0000 0000 0000 0000 BRK Debugger Break.

0000 0000 0000 0001 UNLINK Unlink Frame
(LD R15, R14; POP R14).

0000 0000 0000 0010 PUSHF Push Flags Register .

0000 0000 0000 0011 POPF Pop Flags Register.

0000 0000 0000 0100 ATM Disable Interrupts and DMA during next three
instructions.
Instruction Opcodes UM018807-0208

ZNEO® CPU Core
User Manual

55
0000 0000 0000 0101 NOFLAGS Disable write to FLAGS on next instruction.

0000 0000 0000 0110 — Unimplemented

0000 0000 0000 0111 — Extend prefix used to select extended function
for next ADD, SUB, CP, CPZ, SRR, SRA, SLL,
or UDIV instruction.

0000 0000 0000 1xxx — Unimplemented

0000 0000 0001 xxxx — Unimplemented

0000 0000 0010 dddd
0xrr rrrr rrrr rrrr

LD Rd, soff14(PC) Load Quad pointed to by program counter plus
14-bit signed offset.

0000 0000 0010 dddd
1xrr rrrr rrrr rrrr

LEA Rd, soff14(PC) Load register with PC-based effective address.

0000 0000 0011 dddd
zbrr rrrr rrrr rrrr

LD.UB Rd, soff14(PC)
LD.SB Rd, soff14(PC)
LD.UW Rd, soff14(PC)
LD.SW Rd, soff14(PC)

Load memory Byte or Word pointed to by
program counter plus 14-bit signed offset with
Unsigned/Signed extension.

0000 0000 01xx xxxx — Unimplemented

0000 0000 1xxx xxxx — Unimplemented

0000 0001 cccc dddd LD cc, Rd Load register with condition code.

0000 0010 xxxx xxxx — Unimplemented

0000 0011 00bz dddd
aaaa aaaa aaaa aaaa

LD.UB Rd, addr16
LD.SB Rd, addr16
LD.UW Rd, addr16
LD.SW Rd, addr16

Load memory Byte or Word with Unsigned/
Signed extension; 16-bit address.

0000 0011 0100 dddd
aaaa aaaa aaaa aaaa

LD Rd, addr16 Load memory Quad; 16-bit address.

0000 0011 0101 ssss
aaaa aaaa aaaa aaaa

LD.B addr16, Rs Store memory Byte; 16-bit address.

0000 0011 0110 ssss
aaaa aaaa aaaa aaaa

LD.W addr16, Rs Store memory Word; 16-bit address.

0000 0011 0111 ssss
aaaa aaaa aaaa aaaa

LD addr16, Rs Store memory Quad; 16-bit address.

0000 0011 10bz dddd
aaaa aaaa aaaa aaaa
aaaa aaaa aaaa aaaa

LD.UB Rd, addr32
LD.SB Rd, addr32
LD.UW Rd, addr32
LD.SW Rd, addr32

Load memory Byte or Word with Unsigned/
Signed extension; 32-bit address.

Table 18. ZNEO CPU Instructions Listed by Opcode (Continued)

Opcode Format Instruction, Operands Description
UM018807-0208 Instruction Opcodes

ZNEO® CPU Core
User Manual

56
0000 0011 1100 dddd
aaaa aaaa aaaa aaaa
aaaa aaaa aaaa aaaa

LD Rd, addr32 Load memory Quad; 32-bit address.

0000 0011 1101 ssss
aaaa aaaa aaaa aaaa
aaaa aaaa aaaa aaaa

LD.B addr32, Rs Store memory Byte; 32-bit address.

0000 0011 1110 ssss
aaaa aaaa aaaa aaaa
aaaa aaaa aaaa aaaa

LD.W addr32, Rs Store memory Word; 32-bit address.

0000 0011 1111 ssss
aaaa aaaa aaaa aaaa
aaaa aaaa aaaa aaaa

LD addr32, Rs Store memory Quad; 32-bit address.

0000 0100 mmmm mmmm PUSHMLO mask Push multiple registers, R7–R0.

0000 0101 mmmm mmmm PUSHMHI mask Push multiple registers, R15–R8.

0000 0110 mmmm mmmm POPMLO mask Pop multiple registers, R7–R0.

0000 0111 mmmm mmmm POPMHI mask Pop multiple registers, R15–R8.

0000 1000 iiii iiii LINK #uimm8 Link Frame (PUSH R14; LD R14,R15; SUB
R15,#uimm8).

0000 1001 00xx xxxx — Unimplemented

0000 1001 010+ dddd
xxxx xxxx iiii iiii

LD.B (--Rd), #imm8
LD.B (Rd++), #imm8

Store immediate 8 bits with Predecrement/
Postincrement.

0000 1001 011w dddd
iiii iiii iiii iiii

LD.W (Rd), #imm16
LD (Rd), #simm16

Store signed immediate 16 bits to Word or Quad.

0000 1001 10+w dddd
iiii iiii iiii iiii

LD.W (--Rd), #imm16
LD.W (Rd++), #imm16
LD (--Rd), #simm16
LD (Rd++), #simm16

Store signed immediate 16 bits to Word or Quad
with Predecrement/Postincrement.

0000 1001 1100 dddd
xxxx xxxx iiii iiii

LD.B (Rd), #imm8 Store immediate 8 bits to Byte.

0000 1001 1101 dddd
iiii iiii iiii iiii
iiii iiii iiii iiii

LD (Rd), #imm32 Store immediate 32 bits to Quad.

0000 1001 111+ dddd
iiii iiii iiii iiii
iiii iiii iiii iiii

LD (--Rd), #imm32
LD (Rd++), #imm32

Store immediate 32 bits to Quad with
Predecrement/Postincrement.

0000 1010 iiii iiii PUSH.B #imm8 Push immediate 8 bits onto system stack.

Table 18. ZNEO CPU Instructions Listed by Opcode (Continued)

Opcode Format Instruction, Operands Description
Instruction Opcodes UM018807-0208

ZNEO® CPU Core
User Manual

57
0000 1011 ssss dddd LD (Rd), Rs Store register to Quad.

0000 110w iiii iiii PUSH.W #simm8
PUSH #simm8

Push signed immediate 8 bits to Word or Quad
on system stack.

0000 111b ssss dddd LD.B (Rd), Rs
LD.W (Rd), Rs

Store register to Byte or Word.

0001 000+ ssss dddd LD (--Rd), Rs
LD (Rd++), Rs

Store register to Quad with Predecrement/
Postincrement.

0001 001+ ssss dddd LD Rd, (Rs)
LD Rd, (Rs++)

Load dst register from Quad with optional
Postincrement.

0001 01b+ ssss dddd LD.B (--Rd), Rs
LD.B (Rd++), Rs
LD.W (--Rd), Rs
LD.W (Rd++), Rs

Store register to Byte or Word with
Predecrement/Postincrement.

0001 1zb+ ssss dddd LD.UB Rd, (Rs)
LD.SB Rd, (Rs)
LD.UB Rd, (Rs++)
LD.SB Rd, (Rs++)
LD.UW Rd, (Rs)
LD.SW Rd, (Rs)
LD.UW Rd, (Rs++)
LD.SW Rd, (Rs++)

Load dst register from Byte or Word with optional
Postincrement and Unsigned/Signed extension.

0010 dddd ssss ssss ADD Rd, Rs1+Rs2 Add using two src registers, one dst.

0011 dddd iiii iiii LD Rd, #simm8 Load dst register from immediate 8 bits with
Signed extension.

0100 00zb ssss dddd EXT.UB Rd, Rs
EXT.SB Rd, Rs
EXT.UW Rd, Rs
EXT.SW Rd, Rs

Load 8 or 16 bits to dst from src register with
Unsigned/Signed extension.

0100 0100 ssss dddd LD Rd, Rs Load dst from src register.

0100 0101 000z dddd
iiii iiii iiii iiii

LD Rd, #simm17 Load dst register from immediate 16 bits plus
sign bit z; Signed extension.

0100 0101 0010 dddd
iiii iiii iiii iiii
iiii iiii iiii iiii

LD Rd,#imm32 Load dst register from immediate 32 bits.

0100 0101 0011 dddd LDES Rd Fill dst from Sign bit.

0100 0101 0100 dddd COM Rd Complement destination.

Table 18. ZNEO CPU Instructions Listed by Opcode (Continued)

Opcode Format Instruction, Operands Description
UM018807-0208 Instruction Opcodes

ZNEO® CPU Core
User Manual

58
0100 0101 0101 dddd NEG Rd Negate dst (subtract from zero).

0100 0101 011x xxxx — Unimplemented

0100 0101 1xxx xxxx — Unimplemented

0100 011x xxxx xxxx — Unimplemented

0100 1000 ssss dddd
0xrr rrrr rrrr rrrr

LD Rd, soff14(Rs) Load dst from Quad pointed to by src plus
signed offset.

0100 1000 ssss dddd
1xrr rrrr rrrr rrrr

LEA Rd, soff14(Rs) Load dst with effective address of src operand.

0100 1001 ssss dddd
zbrr rrrr rrrr rrrr

LD.UB Rd, soff14(Rs)
LD.SB Rd, soff14(Rs)
LD.UW Rd, soff14(Rs)
LD.SW Rd, soff14(Rs)

Load dst from Byte or Word pointed to by src
plus signed offset, with Unsigned/Signed
extension.

0100 1010 ssss dddd
xxrr rrrr rrrr rrrr

LD soff14(Rd), Rs Load Quad, pointed to by dst plus signed offset,
from src register.

0100 1011 ssss dddd
xbrr rrrr rrrr rrrr

LD.B soff14(Rd), Rs
LD.W soff14(Rd), Rs

Load Byte or Word, pointed to by dst plus signed
offset, from src register.

0100 11rr rrrr dddd LEA Rd, soff6(FP) Load dst with FP-based effective address.

0101 0brr rrrr ssss LD.B soff6(FP), Rs
LD.W soff6(FP), Rs

Load Byte or Word, pointed to by R14 plus
signed offset, from src register.

0101 10rr rrrr ssss LD soff6(FP), Rs Load Quad, pointed to by R14 plus signed offset,
from src register.

0101 11rr rrrr dddd LD Rd, soff6(FP) Load dst from Quad pointed to by R14 plus
signed offset.

0110 zbrr rrrr dddd LD.UB Rd, soff6(FP)
LD.SB Rd, soff6(FP)
LD.UW Rd, soff6(FP)
LD.SW Rd, soff6(FP)

Load dst from Byte or Word pointed to by R14
plus signed offset, with Unsigned/Signed
extension.

0111 0ooo 00bz dddd
aaaa aaaa aaaa aaaa

BOP.UB Rd, addr16
BOP.SB Rd, addr16
BOP.UW Rd, addr16
BOP.SW Rd, addr16

Binary operation ‘ooo’ on dst using Byte or Word
with Unsigned/Signed extension; 16-bit address.

0111 0ooo 0100 dddd
aaaa aaaa aaaa aaaa

BOP Rd, addr16 Binary operation ‘ooo’ on dst using Quad; 16-bit
address.

0111 0ooo 0101 ssss
aaaa aaaa aaaa aaaa

BOP.B addr16, Rs Binary operation ‘ooo’ on Byte; 16-bit address.

Table 18. ZNEO CPU Instructions Listed by Opcode (Continued)

Opcode Format Instruction, Operands Description
Instruction Opcodes UM018807-0208

ZNEO® CPU Core
User Manual

59
0111 0ooo 0110 ssss
aaaa aaaa aaaa aaaa

BOP.W addr16, Rs Binary operation ‘ooo’ on Word; 16-bit address.

0111 0ooo 0111 ssss
aaaa aaaa aaaa aaaa

BOP addr16, Rs Binary operation ‘ooo’ on Quad; 16-bit address.

0111 0ooo 10bz dddd
aaaa aaaa aaaa aaaa
aaaa aaaa aaaa aaaa

BOP.UB Rd, addr32
BOP.SB Rd, addr32
BOP.UW Rd, addr32
BOP.SW Rd, addr32

Binary operation ‘ooo’ on dst using Byte or Word
with Unsigned/Signed extension; 32-bit address.

0111 0ooo 1100 dddd
aaaa aaaa aaaa aaaa
aaaa aaaa aaaa aaaa

BOP Rd, addr32 Binary operation ‘ooo’ on dst using Quad; 32-bit
address.

0111 0ooo 1101 ssss
aaaa aaaa aaaa aaaa
aaaa aaaa aaaa aaaa

BOP.B addr32, Rs Binary operation ‘ooo’ on Byte; 32-bit address.

0111 0ooo 1110 ssss
aaaa aaaa aaaa aaaa
aaaa aaaa aaaa aaaa

BOP.W addr32, Rs Binary operation ‘ooo’ on Word; 32-bit address.

0111 0ooo 1111 ssss
aaaa aaaa aaaa aaaa
aaaa aaaa aaaa aaaa

BOP addr32, Rs Binary operation ‘ooo’ on Quad; 32-bit address.

0111 1ooo ssss dddd
0bzr rrrr rrrr rrrr

BOP.UB Rd, soff13(Rs)
BOP.SB Rd, soff13(Rs)
BOP.UW Rd, soff13(Rs)
BOP.SW Rd, soff13(Rs)

Binary operation ‘ooo’ on dst using Byte or Word
with Unsigned/Signed extension.

0111 1ooo ssss dddd
100r rrrr rrrr rrrr

BOP Rd, soff13(Rs) Binary operation ‘ooo’ on dst using Quad.

0111 1ooo ssss dddd
101r rrrr rrrr rrrr

BOP.B soff13(Rd), Rs Binary operation ‘ooo’ on Byte.

0111 1ooo ssss dddd
110r rrrr rrrr rrrr

BOP.W soff13(Rd), Rs Binary operation ‘ooo’ on Word.

0111 1ooo ssss dddd
111r rrrr rrrr rrrr

BOP soff13(Rd), Rs Binary operation ‘ooo’ on Quad.

1000 dddd iiii iiii ADD Rd, #simm8 Add 8 signed immediate bits to dst.

1001 dddd iiii iiii CP Rd, #simm8 Compare 8 signed immediate bits to dst.

1010 0ooo ssss dddd BOP Rd, Rs Binary operation ‘ooo’ on dst, src.

1010 100x xxxx xxxx — Unimplemented

Table 18. ZNEO CPU Instructions Listed by Opcode (Continued)

Opcode Format Instruction, Operands Description
UM018807-0208 Instruction Opcodes

ZNEO® CPU Core
User Manual

60
1010 1010 0ooo dddd
iiii iiii iiii iiii

BOP Rd, #uimm16 Binary operation ‘ooo’ on dst using unsigned
immediate 16 bits.

1010 1010 1ooo dddd
iiii iiii iiii iiii
iiii iiii iiii iiii

BOP Rd, #imm32 Binary operation ‘ooo’ on dst using immediate 32
bits.

1010 1011 0ooo dddd
iiii iiii iiii iiii

BOP.W (Rd), #imm16 Binary operation ‘ooo’ on Word using immediate
Word.

1010 1011 1ooo dddd
iiii iiii iiii iiii
iiii iiii iiii iiii

BOP (Rd), #imm32 Binary operation ‘ooo’ on Quad using immediate
Quad.

1010 1100 0boo dddd UOP.B (Rd)
UOP.W (Rd)

Unary operation ‘oo’ on Byte or Word.

1010 1100 1xoo dddd UOP (Rd) Unary operation ‘oo’ on Quad.

1010 1101 0ooo dddd
iiii iiii iiii iiii

BOP (Rd), #simm16 Binary operation ‘ooo’ on Quad using signed
immediate Word.

1010 1101 1000 xxxx — Unimplemented

1010 1101 1001 dddd
xxxx xooo iiii iiii

BOP.B (Rd), #imm8 Binary operation ‘ooo’ on Byte using immediate
Byte.

1010 1101 1010 0boo
aaaa aaaa aaaa aaaa

UOP.B addr16
UOP.W addr16

Unary operation ‘oo’ on Byte or Word. 16-bit
address.

1010 1101 1010 1xoo
aaaa aaaa aaaa aaaa

UOP addr16 Unary operation ‘oo’ on Quad. 16-bit address.

1010 1101 1011 0boo
aaaa aaaa aaaa aaaa
aaaa aaaa aaaa aaaa

UOP.B addr32
UOP.W addr32

Unary operation ‘oo’ on Byte or Word. 32-bit
address.

1010 1101 1011 1xoo
aaaa aaaa aaaa aaaa
aaaa aaaa aaaa aaaa

UOP addr32 Unary operation ‘oo’ on Quad. 32-bit address.

1010 1101 11oo dddd
0brr rrrr rrrr rrrr

UOP.B soff14(Rd)
UOP.W soff14(Rd)

Unary operation ‘oo’ on Byte or Word.

1010 1101 11oo dddd
1xrr rrrr rrrr rrrr

UOP soff14(Rd) Unary operation ‘oo’ on Quad.

1010 1110 ssss dddd UDIV Rd, Rs Unsigned Divide, 64-bit result.

1010 1111 ssss dddd SDIV Rd, Rs Signed Divide, 64-bit result.

1011 0000 ssss dddd UMUL Rd, Rs Unsigned Multiply, 64-bit result.

Table 18. ZNEO CPU Instructions Listed by Opcode (Continued)

Opcode Format Instruction, Operands Description
Instruction Opcodes UM018807-0208

ZNEO® CPU Core
User Manual

61
1011 0001 ssss dddd SMUL Rd, Rs Signed Multiply, 64-bit result.

1011 0010 ssss dddd MUL Rd, Rs Unsigned Multiply, 32-bit result.

1011 0011 xxxx xxxx — Unimplemented

1011 0100 ssss dddd SRA Rd, Rs Arithmetic shift right by src bits. Extend modifier
causes shifted-out bits to overwrite src.

1011 0101 ssss dddd SRL Rd, Rs Logical shift right by src bits. Extend modifier
causes shifted-out bits to overwrite src.

1011 0110 ssss dddd SLL Rd, Rs Logical shift left by src bits. Extend modifier
causes shifted-out bits to overwrite src.

1011 0111 ssss dddd RL Rd, Rs Rotate left by src bits.

1011 100i iiii dddd SRA Rd, #uimm5 Arithmetic shift right by uimm bits. Extend
modifier causes shifted-out bits to overwrite src.

1011 101i iiii dddd SRL Rd, #uimm5 Logical shift right by uimm bits. Extend modifier
causes shifted-out bits to overwrite src.

1011 110i iiii dddd SLL Rd, #uimm5 Logical shift left by uimm bits. Extend modifier
causes shifted-out bits to overwrite src.

1011 111i iiii dddd RL Rd, #uimm5 Rotate left by uimm bits.

1100 rrrr rrrr rrrr JP rel12 Jump with 12-bit offset.

1101 rrrr rrrr rrrr CALL rel12 Call with 12-bit offset.

1110 cccc rrrr rrrr JP cc, rel8 Conditional Jump, signed 8-bit offset.

1111 0000 rrrr rrrr
rrrr rrrr rrrr rrrr

JP rel24 Jump with 24-bit offset.

1111 0001 rrrr rrrr
rrrr rrrr rrrr rrrr

CALL rel24 Call with 24-bit offset.

1111 0010 0000 ssss JP (Rs) Jump to address pointed to by src.

1111 0010 0001 ssss CALL (Rs) Call address pointed to by src.

1111 0010 0010 cccc
rrrr rrrr rrrr rrrr

JP cc,rel16 Conditional Jump, 16-bit offset.

1111 0010 0011 0000
iiii iiii iiii iiii
iiii iiii iiii iiix

JPA #imm32 Jump to immediate address.

1111 0010 0011 0001
iiii iiii iiii iiii
iiii iiii iiii iiix

CALLA #imm32 Call immediate address.

Table 18. ZNEO CPU Instructions Listed by Opcode (Continued)

Opcode Format Instruction, Operands Description
UM018807-0208 Instruction Opcodes

ZNEO® CPU Core
User Manual

62
1111 0010 0011 001x — Unimplemented

1111 0010 0011 01xx — Unimplemented

1111 0010 0011 1xxx — Unimplemented

1111 0010 01xx xxxx — Unimplemented

1111 0010 1xxx xxxx — Unimplemented

1111 0011 xxxx xxxx — Unimplemented

1111 01xx xxxx xxxx — Unimplemented

1111 10xx xxxx xxxx — Unimplemented

1111 1100 xxxx xxxx — Unimplemented

1111 1101 rrrr dddd DJNZ Rd, urel4 Decrement dst and jump if nonzero.

1111 1110 vvvv vvvv TRAP #vector8 Software trap.

1111 1111 0xxx xxxx — Unimplemented

1111 1111 10xx xxxx — Unimplemented

1111 1111 110x xxxx — Unimplemented

1111 1111 1110 xxxx — Unimplemented

1111 1111 1111 00xx — Unimplemented

1111 1111 1111 010x — Unimplemented

1111 1111 1111 0110 — Unimplemented

1111 1111 1111 0111 WDT Watchdog Timer Refresh.

1111 1111 1111 1000 STOP Enter STOP.

1111 1111 1111 1001 HALT Enter HALT.

1111 1111 1111 1010 EI Enable Interrupts.

1111 1111 1111 1011 DI Disable Interrupts.

1111 1111 1111 1100 RET Return from subroutine.

1111 1111 1111 1101 IRET Return from interrupt.

1111 1111 1111 1110 NOP No operation.

1111 1111 1111 1111 ILL Explicit illegal instruction.

Table 18. ZNEO CPU Instructions Listed by Opcode (Continued)

Opcode Format Instruction, Operands Description
Instruction Opcodes UM018807-0208

ZNEO® CPU Core
User Manual

63
Instruction Set Reference
This chapter provides detailed description of the assembly language instructions available
with the ZNEO CPU.

Instruction Notation

Table 19 and Table 20 lists the symbolic notation for expressions and other miscellaneous
symbols used to describe the operation of ZNEO CPU instructions. For general notation
details, see Manual Conventions on page x. For operand notation details, see Operand
Addressing on page 27. The operand abbreviations are explained in Table 17 on page 54.

Numerical and Expression Notation
Table 19 lists symbols and operators used in expressions in this document. This is a subset
of operators recognized by the assembler. For more details, refer to the assembler
documentation.

Table 19. Symbols Used in Expressions

Symbol Definition

$ During assembly, returns the current address.

H Hexadecimal number suffix.

B Binary number suffix.

xB, xH Binary or hexadecimal “don’t care” digit (ignored by CPU).

% Alternate hexadecimal number prefix.
Modulus operator (remainder of division) when preceded and followed by
spaces.

* Multiplication operator (in assembly source).

/ Division operator.

+ Addition operator.

– Subtraction operator. Minus sign or negation when used as unary prefix.

~ One’s complement unary operator.

!= Not equal relational operator. True if terms are not equal.
UM018807-0208 Instruction Set Reference

ZNEO® CPU Core
User Manual

64
Miscellaneous Abbreviations
Table 20 lists additional symbols used in the instruction set descriptions.

Table 20. Abbreviations Used in Text and Tables

Symbol Definition

dst Destination Operand.

src Source Operand.

Rd Destination Register.

Rs Source Register.

cc Condition Code.

← An arrow (←) indicates assignment of a value. For example,
dst ← dst + src indicates that sum of the operands is stored in the
destination location.

↔ A double arrow (↔) indicates the exchange of two values.

× Multiplication sign (arithmetic); repeated operation count.

FLAGS Flags Register.

C Carry Flag.

Z Zero Flag.

S Sign Flag.

V Overflow Flag.

B Blank Flag.

CIRQE Chained Interrupt Enable.

IRQE Master Interrupt Enable.

* Flag bit state depends on result of operation.

- Flag bit state is not affected by operation.

0 Flag bit is cleared to 0.

1 Flag bit is set to 1.

SP Stack Pointer.

PC Program Counter.

FP Frame Pointer.
Instruction Set Reference UM018807-0208

ZNEO® CPU Core
User Manual

65
Example Description

The instruction set descriptions on following pages are organized alphabetically by
mnemonic. An example instruction description is provided below.

Mnemonic

Definition
Definition of instruction mnemonic.

Syntax
Simplified description of assembly coding.

Description
Simplified description of assembly coding

Operation
Symbolic description of the operation performed.

Description
Detailed description of the instruction operation.

Flags
Information on how the CPU Flags are affected by the instruction operation.

Syntax and Opcodes
Table providing assembly syntax and corresponding opcodes.

Example
A sample code example using the instruction.
UM018807-0208 Mnemonic

ZNEO® CPU Core
User Manual

66
ADC

Definition
Add with Carry

Syntax
ADC dst, src

Operation
dst ← dst + src + C

Description
The source operand and the Carry (C) flag are added to the destination operand using
signed (two’s-complement) addition. The sum is stored in the destination operand.
The contents of the source operand are not affected. This instruction is used in
multiple-precision arithmetic to include the carry from the addition of low-order
operands into the addition of high-order operands.

The Zero(Z)flag is set only if the initial state of the Zero flag is 1 and the result is 0.
This instruction is generated by using the Extend prefix, 0007H, with the ADD opcodes.

Flags

Flags are set based on the memory destination size, or 32 bits for register
destinations.

7 6 5 4 3 2 1 0

C Z S V B CIRQE IRQE
* * * * * - - -

C Set to 1 if the result generated a carry. Otherwise 0.
Z Set to 1 if Z is initially 1 and the result is zero. Otherwise 0.
S Set to 1 if the result msb is 1. Otherwise 0.
V Set to 1 if an arithmetic overflow occurs. Otherwise 0.
B Set to 1 if the initial destination or source value was 0. Otherwise 0.
CIRQE No change.
IRQE No change.

Note:
ADC Instruction UM018807-0208

ZNEO® CPU Core
User Manual

67
Syntax and Opcodes

Instruction, Operands
Extend
Prefix Word 0 Word 1 Word 2

ADC Rd, #imm32 0007H {AA8H, Rd} imm[31:16] imm[15:0]
ADC Rd, #simm8 0007H {8H, Rd, simm8}
ADC Rd, #uimm16 0007H {AA0H, Rd} uimm16
ADC Rd, Rs 0007H {A0H, Rs, Rd}
ADC Rd, Rs1+Rs2 0007H {2H, Rd, Rs, Rs}
ADC Rd, addr16 0007H {704H, Rd} addr16
ADC Rd, addr32 0007H {70CH, Rd} addr[31:16] addr[15:0]
ADC Rd, soff13(Rs) 0007H {78H, Rs, Rd} {100B, soff13}
ADC addr16, Rs 0007H {707H, Rs} addr16
ADC addr32, Rs 0007H {70FH, Rs} addr[31:16] addr[15:0]
ADC (Rd), #imm32 0007H {AB8H, Rd} imm[31:16] imm[15:0]
ADC (Rd), #simm16 0007H {AD0H, Rd} simm16
ADC soff13(Rd), Rs 0007H {78H, Rs, Rd} {111B, soff13}
ADC.W addr16, Rs 0007H {706H, Rs} addr16
ADC.W addr32, Rs 0007H {70EH, Rs} addr[31:16] addr[15:0]
ADC.W (Rd), #imm16 0007H {AB0H, Rd} imm16
ADC.W soff13(Rd), Rs 0007H {78H, Rs, Rd} {110B, soff13}
ADC.SW Rd, addr16 0007H {703H, Rd} addr16
ADC.SW Rd, addr32 0007H {70BH, Rd} addr[31:16] addr[15:0]
ADC.SW Rd, soff13(Rs) 0007H {78H, Rs, Rd} {011B, soff13}
ADC.UW Rd, addr16 0007H {702H, Rd} addr16
ADC.UW Rd, addr32 0007H {70AH, Rd} addr[31:16] addr[15:0]
ADC.UW Rd, soff13(Rs) 0007H {78H, Rs, Rd} {010B, soff13}
ADC.B addr16, Rs 0007H {705H, Rs} addr16
ADC.B addr32, Rs 0007H {70DH, Rs} addr[31:16] addr[15:0]
ADC.B (Rd), #imm8 0007H {AD9H, Rd} {xH, x000B,

imm8}
ADC.B soff13(Rd), Rs 0007H {78H, Rs, Rd} {101B, soff13}
ADC.SB Rd, addr16 0007H {701H, Rd} addr16
ADC.SB Rd, addr32 0007H {709H, Rd} addr[31:16] addr[15:0]
ADC.SB Rd, soff13(Rs) 0007H {78H, Rs, Rd} {001B, soff13}
ADC.UB Rd, addr16 0007H {700H, Rd} addr16
UM018807-0208 ADC Instruction

ZNEO® CPU Core
User Manual

68
Examples

• Before: R3=16H, R11=20H, Flag C=1

 ADC R3, R11 ;Object Code: 0007 A0B3

After: R3=37H, Flags C, Z, S, V, B = 0

• Before: R3=16H, R11=20H, Flag C=0

 ADC R3, R11 ;Object Code: 0007 A0B3

After: R3=36H, Flags C, Z, S, V, B = 0

ADC.UB Rd, addr32 0007H {708H, Rd} addr[31:16] addr[15:0]
ADC.UB Rd, soff13(Rs) 0007H {78H, Rs, Rd} {000B, soff13}

Instruction, Operands
Extend
Prefix Word 0 Word 1 Word 2
ADC Instruction UM018807-0208

ZNEO® CPU Core
User Manual

69
ADD

Definition
Add

Syntax
ADD dst, src

Operation
dst ← dst + src

Description
Add the source operand to the destination operand. Perform signed (two’s-complement)
addition. Store the sum in the destination operand. The contents of the source operand are
not affected.

Flags

Flags are set based on the memory destination size, or 32 bits for register
destinations.

7 6 5 4 3 2 1 0

C Z S V B CIRQE IRQE
* * * * * - - -

C Set to 1 if the result generated a carry. Otherwise 0.
Z Set to 1 if the result is zero. Otherwise 0.
S Set to 1 if the result msb is 1. Otherwise 0.
V Set to 1 if an arithmetic overflow occurs. Otherwise 0.
B Set to 1 if the initial destination or source value was 0. Otherwise 0.
CIRQE No change.
IRQE No change.

Note:
UM018807-0208 ADD Instruction

ZNEO® CPU Core
User Manual

70
Syntax and Opcodes

Instruction, Operands Word 0 Word 1 Word 2
ADD Rd, #imm32 {AA8H, Rd} imm[31:16] imm[15:0]
ADD Rd, #simm8 {8H, Rd, simm8}
ADD Rd, #uimm16 {AA0H, Rd} uimm16
ADD Rd, Rs {A0H, Rs, Rd}
ADD Rd, Rs1+Rs2 {2H, Rd, Rs, Rs}
ADD Rd, addr16 {704H, Rd} addr16
ADD Rd, addr32 {70CH, Rd} addr[31:16] addr[15:0]
ADD Rd, soff13(Rs) {78H, Rs, Rd} {100B, soff13}
ADD addr16, Rs {707H, Rs} addr16
ADD addr32, Rs {70FH, Rs} addr[31:16] addr[15:0]
ADD (Rd), #imm32 {AB8H, Rd} imm[31:16] imm[15:0]
ADD (Rd), #simm16 {AD0H, Rd} simm16
ADD soff13(Rd), Rs {78H, Rs, Rd} {111B, soff13}
ADD.W addr16, Rs {706H, Rs} addr16
ADD.W addr32, Rs {70EH, Rs} addr[31:16] addr[15:0]
ADD.W (Rd), #imm16 {AB0H, Rd} imm16
ADD.W soff13(Rd), Rs {78H, Rs, Rd} {110B, soff13}
ADD.SW Rd, addr16 {703H, Rd} addr16
ADD.SW Rd, addr32 {70BH, Rd} addr[31:16] addr[15:0]
ADD.SW Rd, soff13(Rs) {78H, Rs, Rd} {011B, soff13}
ADD.UW Rd, addr16 {702H, Rd} addr16
ADD.UW Rd, addr32 {70AH, Rd} addr[31:16] addr[15:0]
ADD.UW Rd, soff13(Rs) {78H, Rs, Rd} {010B, soff13}
ADD.B addr16, Rs {705H, Rs} addr16
ADD.B addr32, Rs {70DH, Rs} addr[31:16] addr[15:0]
ADD.B (Rd), #imm8 {AD9H, Rd} {xH, x000B, imm8}
ADD.B soff13(Rd), Rs {78H, Rs, Rd} {101B, soff13}
ADD.SB Rd, addr16 {701H, Rd} addr16
ADD.SB Rd, addr32 {709H, Rd} addr[31:16] addr[15:0]
ADD.SB Rd, soff13(Rs) {78H, Rs, Rd} {001B, soff13}
ADD.UB Rd, addr16 {700H, Rd} addr16
ADD.UB Rd, addr32 {708H, Rd} addr[31:16] addr[15:0]
ADD.UB Rd, soff13(Rs) {78H, Rs, Rd} {000B, soff13}
ADD Instruction UM018807-0208

ZNEO® CPU Core
User Manual

71
Examples

• Before: R3=16H, R11=20H

 ADD R3, R11 ;Object Code: A0B3

After: R3=36H, Flags C, Z, S, V, B = 0

• Before: R3=FFFF_B023H, FFFF_B023H=702EH

 ADD.W (R3), #1055H ;Object Code: AB03 1055

After: FFFF_B023H=8083H, Flags S=1, C, Z, V, B=0

• Before: R12=16H, R10=FFFF_B020H, FFFF_B020H=91H

 ADD.UB R12, (R10) ;Object Code: 78AC 0000

After: R12=A7H, Flags C, Z, S, V, B = 0

• Before: R12=16H, R10=FFFF_B020H, FFFF_B020H=91H

 ADD.SB R12, (R10) ;Object Code: 78AC 2000

After: R12=FFFF_FFA7H, Flags S=1 C, Z, V, B = 0

• Before: FFFF_B034H=2EH, R12=1BH

 ADD.B B034H:RAM, R12 ;Object Code: 705C B034

After: FFFF_B034H = 49H, Flags C, Z, S, V, B =0
UM018807-0208 ADD Instruction

ZNEO® CPU Core
User Manual

72
AND

Definition
Logical AND

Syntax
AND dst, src

Operation
dst ← dst AND src

Description
The source operand is logically ANDed with the destination operand. An AND
operation stores a 1 when the corresponding bits in the two operands are both 1;
otherwise the operation stores a 0. The result is written to the destination. The contents of
the source are unaffected. Table 21 summarizes the AND operation.

Table 21. Truth Table for AND

dst src Result (dst)

0 0 0

1 0 0

0 1 0

1 1 1
AND Instruction UM018807-0208

ZNEO® CPU Core
User Manual

73
Flags

Flags are set based on the memory destination size, or 32 bits for register
destinations.

7 6 5 4 3 2 1 0

C Z S V B CIRQE IRQE
- * * 0 * - - -

C No change.
Z Set to 1 if the result is zero. Otherwise 0.
S Set to 1 if the result msb is 1. Otherwise 0.
V Cleared to 0.
B Set to 1 if the initial destination or source value was 0. Otherwise 0.
CIRQE No change.
IRQE No change.

Note:
UM018807-0208 AND Instruction

ZNEO® CPU Core
User Manual

74
Syntax and Opcodes

Instruction, Operands Word 0 Word 1 Word 2
AND Rd, #imm32 {AAAH, Rd} imm[31:16] imm[15:0]
AND Rd, #uimm16 {AA2H, Rd} uimm16
AND Rd, Rs {A2H, Rs, Rd}
AND Rd, addr16 {724H, Rd} addr16
AND Rd, addr32 {72CH, Rd} addr[31:16] addr[15:0]
AND Rd, soff13(Rs) {7AH, Rs, Rd} {100B, soff13}
AND addr16, Rs {727H, Rs} addr16
AND addr32, Rs {72FH, Rs} addr[31:16] addr[15:0]
AND (Rd), #imm32 {ABAH, Rd} imm[31:16] imm[15:0]
AND (Rd), #simm16 {AD2H, Rd} simm16
AND soff13(Rd), Rs {7AH, Rs, Rd} {111B, soff13}
AND.W addr16, Rs {726H, Rs} addr16
AND.W addr32, Rs {72EH, Rs} addr[31:16] addr[15:0]
AND.W (Rd), #imm16 {AB2H, Rd} imm16
AND.W soff13(Rd), Rs {7AH, Rs, Rd} {110B, soff13}
AND.SW Rd, addr16 {723H, Rd} addr16
AND.SW Rd, addr32 {72BH, Rd} addr[31:16] addr[15:0]
AND.SW Rd, soff13(Rs) {7AH, Rs, Rd} {011B, soff13}
AND.UW Rd, addr16 {722H, Rd} addr16
AND.UW Rd, addr32 {72AH, Rd} addr[31:16] addr[15:0]
AND.UW Rd, soff13(Rs) {7AH, Rs, Rd} {010B, soff13}
AND.B addr16, Rs {725H, Rs} addr16
AND.B addr32, Rs {72DH, Rs} addr[31:16] addr[15:0]
AND.B (Rd), #imm8 {AD9H, Rd} {xH, x010B, imm8}
AND.B soff13(Rd), Rs {7AH, Rs, Rd} {101B, soff13}
AND.SB Rd, addr16 {721H, Rd} addr16
AND.SB Rd, addr32 {729H, Rd} addr[31:16] addr[15:0]
AND.SB Rd, soff13(Rs) {7AH, Rs, Rd} {001B, soff13}
AND.UB Rd, addr16 {720H, Rd} addr16
AND.UB Rd, addr32 {728H, Rd} addr[31:16] addr[15:0]
AND.UB Rd, soff13(Rs) {7AH, Rs, Rd} {000B, soff13}
AND Instruction UM018807-0208

ZNEO® CPU Core
User Manual

75
Examples

• Before: R1[7:0]=38H (0011_1000B),
R14[7:0]=8DH (1000_1101B)

 AND R1, R14 ;Object Code: A2E1

After: R1[7:0]=08H (0000_1000B), Flags Z, V, S, B=0

• Before: R4[31:8]=FFFF_FFH, R4[7:0]=79H (0111_1001B),
FFFF_B07BH=EAH (1110_1010B)

 AND.SB R4, B07BH:RAM ;Object Code: 7214 B07B

After: R4[31:8]=FFFF_FFH, R4[7:0]=68H (0110_1000B), Flags S=1; Z, V, B=0

• Before: R4[31:8]=FFFF_FFH, R4[7:0]=79H (0111_1001B),
FFFF_B07BH=EAH (1110_1010B)

 AND.UB R4, B07BH:RAM ;Object Code: 7204 B07B

After: R4[31:8]=0000_00H, R4[7:0]=68H (0110_1000B), Flags Z, V, S, B=0

• Before: R13=FFFF_B07AH, FFFF_B07AH=C3F7H (1100_0011_1111_0111B)

 AND.W (R13), #80F0H ;Object Code: AB2D 80F0

After: FFFF_B07AH=80F0H (1000_0000_1111_0000B), Flags S=1; Z, V, B=0
UM018807-0208 AND Instruction

ZNEO® CPU Core
User Manual

76
ATM

Definition
Atomic Execution

Syntax
ATM

Operation
Block all interrupt and DMA requests during execution of the next 3 instructions.

Description
The Atomic instruction forces the ZNEO CPU to execute the next three instructions
as a single block (that is, atom) of operations. During execution of these next three instruc-
tions, all interrupts and DMA requests are prevented. This allows operations to be
performed on memory locations that might otherwise be changed or used during the
operation by interrupts or DMA.

Flags
Flags are not affected by this instruction.

Syntax and Opcodes

Example
The following example tests a bit used to lock a resource, and then sets the bit if it is clear.
ATM ensures the tested bit can be set before another routine tests it.

Instruction, Operands Word 0 Word 1 Word 2
ATM 0004H

LD R7, #00000010B ;Load mask for bit 1 Object Code: 3702

ATM ;Block interrupt/DMA
requests

Object Code: 0004

TM.B B047H:RAM, R7 ;Test semaphore with bit
mask

Object Code: 7657
B047

JP NZ, Msg1_In_Use ;JP if resource is in use Object Code: EE xx

OR.B B047H:RAM, R7 ;Else set masked bit
; to lock resource

Object Code: 7357
B047
ATM Instruction UM018807-0208

ZNEO® CPU Core
User Manual

77
BRK

Definition
On-Chip Debugger Break

Syntax
BRK

Operation
None

Description
If the Break capability is enabled, execution of the BRK instruction initiates an On-Chip
Debugger break at this address. If the Break capability is not enabled, the BRK instruction
operates as an Illegal Instruction Exception (ILL).

Refer to the device-specific Product Specification for information regarding the
On-Chip Debugger.

Flags
Flags are not affected by this instruction.

Syntax and Opcodes

Instruction, Operands Word 0 Word 1 Word 2
BRK 0000H

Note:
UM018807-0208 BRK Instruction

ZNEO® CPU Core
User Manual

78
CALL

Definition
CALL Procedure

Syntax
CALL dst

Operation
SP ← SP−4
(SP)← PC
PC ← destination address

Description
A CALL instruction decrements the Stack Pointer (R15) by four and stores the current
Program Counter value on the top of the stack. The pushed PC value points to the first
instruction following the CALL instruction. Then the destination address is loaded into the
Program Counter and execution of the procedure begins. After the procedure completes,
it uses a RET instruction to pop the previous PC value and return from the procedure.

In assembly language, the destination is specified as a label or 32-bit address operand.
When possible, the ZNEO CPU assembler automatically calculates a relative offset and
generates relative CALL opcodes to produce more efficient object code. For a relative
CALL, the destination address is the PC value plus two times the relative operand value.

In the CALL (Rs) syntax, if the contents of Rs are odd the least significant bit is
discarded, so that the call destination address is always an even number.

To invoke a 32-bit addressed call explicitly, use the CALLA instruction.

Flags
Flags are not affected by this instruction.

Syntax and Opcodes

Instruction, Operands Word 0 Word 1 Word 2
CALL (Rs) {F21H, Rs}
CALL rel12 {DH, rel12}
CALL rel24 {F1H, rel[23:16]} rel[15:0]
CALL Instruction UM018807-0208

ZNEO® CPU Core
User Manual

79
Example
 Before: PC=0000_0472H, SP=FFFF_DE24H, R7=0000_3521H

 CALL (R7) ;Object Code: F217

After: PC=0000_3520, SP=FFFF_DE20H, FFFF_DE20H=0000_0478H
UM018807-0208 CALL Instruction

ZNEO® CPU Core
User Manual

80
CALLA

Definition
CALL Absolute

Syntax
CALLA dst

Operation
SP ← SP – 4
(SP) ← PC
PC ← dst

Description
The CALLA instruction decrements the Stack Pointer (R15) by four and stores the current
Program Counter value onto the top of the stack. The pushed PC value points to the first
instruction following the CALLA instruction. Then the 32-bit immediate operand is
loaded into the Program Counter and execution of the procedure begins. After the proce-
dure completes, it uses a RET instruction to pop the previous PC value and return from the
procedure.

If the immediate operand is odd, the least significant bit is discarded so that the call
destination address is always an even number.

The CALLA instruction is used to explicitly invoke the 32-bit immediate call opcode in
situations when a fixed opcode size is desired, such as a jump table.

Flags
Flags are not affected by this instruction.

Syntax and Opcodes

Example
Before: PC=0000_044EH, SP=FFFF_DB22H

 CALLA 00352920H ;Object Code: F231 0035 2920

After: PC=0035_2920, SP=FFFF_DB1EH, FFFF_DB1EH=0000_0454H

Instruction, Operands Word 0 Word 1 Word 2
CALLA imm32 F231H imm[31:16] imm[15:0]
CALLA Instruction UM018807-0208

ZNEO® CPU Core
User Manual

81
CLR

Definition
Clear

Syntax
CLR dst

Operation
dst ← 0

Description
All bits of the destination operand are cleared to 0.

Flags
Flags are not affected by this instruction.

Syntax and Opcodes

Instruction, Operands Word 0 Word 1 Word 2
CLR Rd {3H, Rd, 00H}1

CLR addr16 {ADAH, 1x00B} addr16
CLR addr32 {ADBH, 1x00B} addr[31:16] addr[15:0]
CLR (Rd) {ACH, 1x00B, Rd}
CLR soff14(Rd) {ADCH, Rd} {1xB, soff14}
CLR.W addr16 ADA4H addr16
CLR.W addr32 ADB4H addr[31:16] addr[15:0]
CLR.W (Rd) {AC4H, Rd}
CLR.W soff14(Rd) {ADCH, Rd} {01B, soff14}
CLR.B addr16 ADA0H addr16
CLR.B addr32 ADB0H addr[31:16] addr[15:0]
CLR.B (Rd) {AC0H, Rd}
CLR.B soff14(Rd) {ADCH, Rd} {00B, soff14}
1 The ZNEO CPU assembler uses an LD opcode to implement CLR Rd.
UM018807-0208 CLR Instruction

ZNEO® CPU Core
User Manual

82
Examples

• Before: FFFF_B032H=8BF7_47AFH

 CLR B032H:RAM ;Object code: ADA8 B032 or ADAE B032

After: FFFF_B032H=0000_0000H

• Before: R7=FFFF_B023H, FFFF_B023H=FCH

 CLR.B (R7) ;Object code: AC07

After: FFFF_B023H=00H
CLR Instruction UM018807-0208

ZNEO® CPU Core
User Manual

83
COM

Definition
Complement

Syntax
COM dst

Operation
dst ← ~dst

Description
The contents of the destination operand are complemented (one’s complement).
All 1 bits are changed to 0 and all 0 bits are changed to 1.

Flags

Flags are set based on the 32-bit destination register value.

Syntax and Opcodes

7 6 5 4 3 2 1 0

C Z S V B CIRQE IRQE
0 * * 0 * - - -

C Cleared to 0.
Z Set to 1 if the result is zero. Otherwise 0.
S Set to 1 if the result msb is 1. Otherwise 0.
V Cleared to 0.
B Set to 1 if the initial destination value was 0. Otherwise 0.
CIRQE No change.
IRQE No change.

Instruction, Operands Word 0 Word 1 Word 2
COM Rd {454H, Rd}

Note:
UM018807-0208 COM Instruction

ZNEO® CPU Core
User Manual

84
Example
 Before: R7=7F37_B2D3H (0111_1111_0011_0111_1011_0010_1101_0011B)

 COM R7 ;Object code: 4547

After: R7=80C8_4D2CH (1000_0000_1100_1000_0100_1101_0010_1100B),
Flags S=1; C, Z, V, B=0
COM Instruction UM018807-0208

ZNEO® CPU Core
User Manual

85
CP

Definition
Compare

Syntax
CP dst, src

Operation
dst – src

Description
The source operand is compared to (subtracted from) the destination operand and the flags
are set according to the results of the operation. The contents of both the source and |
destination operands are unaffected.

Flags

Flags are set based on the memory destination size, or 32 bits for register
destinations.

7 6 5 4 3 2 1 0

C Z S V B CIRQE IRQE
* * * * * - - -

C Set to 1 if the result generated a borrow. Otherwise 0.
Z Set to 1 if the result is zero. Otherwise 0.
S Set to 1 if the result msb is 1. Otherwise 0.
V Set to 1 if an arithmetic overflow occurs. Otherwise 0.
B Set to 1 if the initial destination or source value was 0. Otherwise 0.
CIRQE No change.
IRQE No change.

Note:
UM018807-0208 CP Instruction

ZNEO® CPU Core
User Manual

86
Syntax and Opcodes

Instruction, Operands Word 0 Word 1 Word 2
CP Rd, #imm32 {AADH, Rd} imm[31:16] imm[15:0]
CP Rd, #simm8 {9H, Rd, simm8}
CP Rd, #uimm16 {AA5H, Rd} uimm16
CP Rd, Rs {A5H, Rs, Rd}
CP Rd, addr16 {754H, Rd} addr16
CP Rd, addr32 {75CH, Rd} addr[31:16] addr[15:0]
CP Rd, soff13(Rs) {7DH, Rs, Rd} {100B, soff13}
CP addr16, Rs {757H, Rs} addr16
CP addr32, Rs {75FH, Rs} addr[31:16] addr[15:0]
CP (Rd), #imm32 {ABDH, Rd} imm[31:16] imm[15:0]
CP (Rd), #simm16 {AD5H, Rd} simm16
CP soff13(Rd), Rs {7DH, Rs, Rd} {111B, soff13}
CP.W addr16, Rs {756H, Rs} addr16
CP.W addr32, Rs {75EH, Rs} addr[31:16] addr[15:0]
CP.W (Rd), #imm16 {AB5H, Rd} imm16
CP.W soff13(Rd), Rs {7DH, Rs, Rd} {110B, soff13}
CP.SW Rd, addr16 {753H, Rd} addr16
CP.SW Rd, addr32 {75BH, Rd} addr[31:16] addr[15:0]
CP.SW Rd, soff13(Rs) {7DH, Rs, Rd} {011B, soff13}
CP.UW Rd, addr16 {752H, Rd} addr16
CP.UW Rd, addr32 {75AH, Rd} addr[31:16] addr[15:0]
CP.UW Rd, soff13(Rs) {7DH, Rs, Rd} {010B, soff13}
CP.B addr16, Rs {755H, Rs} addr16
CP.B addr32, Rs {75DH, Rs} addr[31:16] addr[15:0]
CP.B (Rd), #imm8 {AD9H, Rd} {xH, x101B, imm8}
CP.B soff13(Rd), Rs {7DH, Rs, Rd} {101B, soff13}
CP.SB Rd, addr16 {751H, Rd} addr16
CP.SB Rd, addr32 {759H, Rd} addr[31:16] addr[15:0]
CP.SB Rd, soff13(Rs) {7DH, Rs, Rd} {001B, soff13}
CP.UB Rd, addr16 {750H, Rd} addr16
CP.UB Rd, addr32 {758H, Rd} addr[31:16] addr[15:0]
CP.UB Rd, soff13(Rs) {7DH, Rs, Rd} {000B, soff13}
CP Instruction UM018807-0208

ZNEO® CPU Core
User Manual

87
Examples

• Before: R3=16H, R11=20H

 CP R3, R11 ;Object code: A5B3

After: Flags C, S=1; Z, V, B=0

• Before: R3=FFFF_B0D4H, FFFF_B0D4H=800FH

 CP.W (R3), #FFFFH ;Object Code: AB53 FFFF

After: Flags C, S=1; Z, V, B=0

• Before: R3=FFFF_B0D4H, FFFF_B0D4H=800FH

 CP.W (R3), #800FH ;Object Code: AB53 800F

After: Flags Z=1; C, S, V, B=0

• Before: R12=0DH, R10=FFFF_B020H, FFFF_B020H=00H

 CP.UB R12, (R10) ;Object Code: 7DAC 0000

After: Flags B=1, C, Z, S, V = 0

• Before: R12=16H, R10=FFFF_B020H, FFFF_B020H=91H

 CP.SB R12, (R10) ;Object Code: 7DAC 2000

After: Flags S=1; C, Z, V, B = 0

• Before: FFFF_B034H=2EH, R12=1BH

 CP.B B034H:RAM, R12 ;Object Code: 755C B034

After: Flags C, Z, S, V, B =0
UM018807-0208 CP Instruction

ZNEO® CPU Core
User Manual

88
CPC

Definition
Compare with Carry

Syntax
CPC dst, src

Operation
dst – src – C

Description
The source operand with the C bit is compared to (subtracted from) the destination
operand. The contents of both operands are unaffected. Repeating this instruction enables
multi-register compares. The Zero flag is set only if the initial state of the Zero flag is 1
and the result is 0. This instruction is generated by using the Extend prefix, 0007H, with
the CP opcodes.

Flags

Flags are set based on the memory destination size, or 32 bits for register
destinations.

7 6 5 4 3 2 1 0

C Z S V B CIRQE IRQE
* * * * * - - -

C Set to 1 if the result generated a borrow. Otherwise 0.
Z Set to 1 if Z is initially 1 and the result is zero. Otherwise 0.
S Set to 1 if the result msb is 1. Otherwise 0.
V Set to 1 if an arithmetic overflow occurs. Otherwise 0.
B Set to 1 if the initial destination or source value was 0. Otherwise 0.
CIRQE No change.
IRQE No change.

Note:
CPC Instruction UM018807-0208

ZNEO® CPU Core
User Manual

89
Syntax and Opcodes

Instruction, Operands
Extend
Prefix Word 0 Word 1 Word 2

CPC Rd, #imm32 0007H {AADH, Rd} imm[31:16] imm[15:0]
CPC Rd, #simm8 0007H {9H, Rd, simm8}
CPC Rd, #uimm16 0007H {AA5H, Rd} uimm16
CPC Rd, Rs 0007H {A5H, Rs, Rd}
CPC Rd, addr16 0007H {754H, Rd} addr16
CPC Rd, addr32 0007H {75CH, Rd} addr[31:16] addr[15:0]
CPC Rd, soff13(Rs) 0007H {7DH, Rs, Rd} {100B, soff13}
CPC addr16, Rs 0007H {757H, Rs} addr16
CPC addr32, Rs 0007H {75FH, Rs} addr[31:16] addr[15:0]
CPC (Rd), #imm32 0007H {ABDH, Rd} imm[31:16] imm[15:0]
CPC (Rd), #simm16 0007H {AD5H, Rd} simm16
CPC soff13(Rd), Rs 0007H {7DH, Rs, Rd} {111B, soff13}
CPC.W addr16, Rs 0007H {756H, Rs} addr16
CPC.W addr32, Rs 0007H {75EH, Rs} addr[31:16] addr[15:0]
CPC.W (Rd), #imm16 0007H {AB5H, Rd} imm16
CPC.W soff13(Rd), Rs 0007H {7DH, Rs, Rd} {110B, soff13}
CPC.SW Rd, addr16 0007H {753H, Rd} addr16
CPC.SW Rd, addr32 0007H {75BH, Rd} addr[31:16] addr[15:0]
CPC.SW Rd, soff13(Rs) 0007H {7DH, Rs, Rd} {011B, soff13}
CPC.UW Rd, addr16 0007H {752H, Rd} addr16
CPC.UW Rd, addr32 0007H {75AH, Rd} addr[31:16] addr[15:0]
CPC.UW Rd, soff13(Rs) 0007H {7DH, Rs, Rd} {010B, soff13}
CPC.B addr16, Rs 0007H {755H, Rs} addr16
CPC.B addr32, Rs 0007H {75DH, Rs} addr[31:16] addr[15:0]
CPC.B (Rd), #imm8 0007H {AD9H, Rd} {xH, x101B,

imm8}
CPC.B soff13(Rd), Rs 0007H {7DH, Rs, Rd} {101B, soff13}
CPC.SB Rd, addr16 0007H {751H, Rd} addr16
CPC.SB Rd, addr32 0007H {759H, Rd} addr[31:16] addr[15:0]
CPC.SB Rd, soff13(Rs) 0007H {7DH, Rs, Rd} {001B, soff13}
CPC.UB Rd, addr16 0007H {750H, Rd} addr16
CPC.UB Rd, addr32 0007H {758H, Rd} addr[31:16] addr[15:0]
CPC.UB Rd, soff13(Rs) 0007H {7DH, Rs, Rd} {000B, soff13}
UM018807-0208 CPC Instruction

ZNEO® CPU Core
User Manual

90
Examples

• Before: R3=16H, R11=16H, Z=1, C=0

 CPC R3, R11 ;Object code: 0007 A5B3

After: Flags Z=1; C, S, V, B=0

• Before: R3=16H, R11=16H, C=1

 CPC R3, R11 ;Object code: 0007 A5B3

After: Flags C, S=1; Z, V, B=0
CPC Instruction UM018807-0208

ZNEO® CPU Core
User Manual

91
CPCZ

Definition
Compare with Carry to Zero

Syntax
CPCZ dst

Operation
dst – 0 – C

Description
The value zero and the Carry bit are compared to (subtracted from) the destination
operand and the flags are set according to the results of the operation. The contents
of the destination operand are unaffected. Repeating this instruction enables multi-register
compares. The Zero flag is set only if the initial state of the Zero flag is 1 and the result is
0. This instruction is generated by using the Extend prefix, 0007H, with the CPZ opcodes.

Flags

Flags are set based on the memory destination size, or 32 bits for register
destinations.

7 6 5 4 3 2 1 0

C Z S V B CIRQE IRQE
* * * * 1 - - -

C Set to 1 if the result generated a borrow. Otherwise 0.
Z Set to 1 if Z is initially 1 and the result is zero. Otherwise 0.
S Set to 1 if the result msb is 1. Otherwise 0.
V Set to 1 if an arithmetic overflow occurs. Otherwise 0.
B Set to 1.
CIRQE No change.
IRQE No change.

Note:
UM018807-0208 CPCZ Instruction

ZNEO® CPU Core
User Manual

92
Syntax and Opcodes

Examples

• Before: R3=FFFF_B0D4H, FFFF_B0D4H=0000H, Z=1, C=0

 CPCZ.W (R3) ;Object Code: 0007 AC53

After: Flags Z, B=1; C, S, V=0

• Before: R3=FFFF_B0D4H, FFFF_B0D4H=0000H, C=1

 CPCZ.W (R3) ;Object Code: 0007 AC53

After: Flags C, S, B=1; Z, V=0

Instruction, Operands
Extend
Prefix Word 0 Word 1 Word 2

CPCZ Rd 0007H {9H, Rd, 00H}1

CPCZ addr16 0007H {ADAH, 1x01B} addr16
CPCZ addr32 0007H {ADBH, 1x01B} addr[31:16] addr[15:0]
CPCZ (Rd) 0007H {ACH, 1x01B, Rd}
CPCZ soff14(Rd) 0007H {ADDH, Rd} {1xB, soff14}
CPCZ.W addr16 0007H ADA5H addr16
CPCZ.W addr32 0007H ADB5H addr[31:16] addr[15:0]
CPCZ.W (Rd) 0007H {AC5H, Rd}
CPCZ.W soff14(Rd) 0007H {ADDH, Rd} {01B, soff14}
CPCZ.B addr16 0007H ADA1H addr16
CPCZ.B addr32 0007H ADB1H addr[31:16] addr[15:0]
CPCZ.B (Rd) 0007H {AC1H, Rd}
CPCZ.B soff14(Rd) 0007H {ADDH, Rd} {00B, soff14}
1The ZNEO CPU assembler uses a CPC opcode to implement CPCZ Rd.
CPCZ Instruction UM018807-0208

ZNEO® CPU Core
User Manual

93
CPZ

Definition
Compare to Zero

Syntax
CPZ dst

Operation
dst – 0

Description
The value zero is compared to (subtracted from) the destination operand and the flags are
set according to the results of the operation. The contents of the destination
operand are unaffected.

Flags

Flags are set based on the memory destination size, or 32 bits for register
destinations.

7 6 5 4 3 2 1 0

C Z S V B CIRQE IRQE
* * * * 1 - - -

C Set to 1 if the result generated a borrow. Otherwise 0.
Z Set to 1 if the result is zero. Otherwise 0.
S Set to 1 if the result msb is 1. Otherwise 0.
V Set to 1 if an arithmetic overflow occurs. Otherwise 0.
B Set to 1.
CIRQE No change.
IRQE No change.

Note:
UM018807-0208 CPZ Instruction

ZNEO® CPU Core
User Manual

94
Syntax and Opcodes

Examples

• Before: R3=FFFF_B0D4H, FFFF_B0D4H=0000H

 CPZ.W (R3) ;Object Code: AC53

After: Flags Z, B=1; C, S, V=0

• Before: R3=FFFF_B0D4H, FFFF_B0D4H=7042H

 CPZ.W (R3) ;Object Code: AC53

After: Flags B=1, C, S, Z, V=0

Instruction, Operands Word 0 Word 1 Word 2
CPZ Rd {9H, Rd, 00H}1

CPZ addr16 {ADAH, 1x01B} addr16
CPZ addr32 {ADBH, 1x01B} addr[31:16] addr[15:0]
CPZ (Rd) {ACH, 1x01B, Rd}
CPZ soff14(Rd) {ADDH, Rd} {1xB, soff14}
CPZ.W addr16 ADA5H addr16
CPZ.W addr32 ADB5H addr[31:16] addr[15:0]
CPZ.W (Rd) {AC5H, Rd}
CPZ.W soff14(Rd) {ADDH, Rd} {01B, soff14}
CPZ.B addr16 ADA1H addr16
CPZ.B addr32 ADB1H addr[31:16] addr[15:0]
CPZ.B (Rd) {AC1H, Rd}
CPZ.B soff14(Rd) {ADDH, Rd} {00B, soff14}
1The ZNEO CPU assembler uses a CP opcode to implement CPZ Rd.
CPZ Instruction UM018807-0208

ZNEO® CPU Core
User Manual

95
DEC

Definition
Decrement

Syntax
DEC dst

Operation
dst ← dst – 1

Description
The contents of the destination operand are decremented by one.

Flags

Flags are set based on the memory destination size, or 32 bits for register
destinations.

7 6 5 4 3 2 1 0

C Z S V B CIRQE IRQE
* * * * * - - -

C Set to 1 if the result generated a borrow. Otherwise 0.
Z Set to 1 if the result is zero. Otherwise 0.
S Set to 1 if the result msb is 1. Otherwise 0.
V Set to 1 if an arithmetic overflow occurs. Otherwise 0.
B Set to 1 if the initial destination value was 0. Otherwise 0.
CIRQE No change.
IRQE No change.

Note:
UM018807-0208 DEC Instruction

ZNEO® CPU Core
User Manual

96
Syntax and Opcodes

Examples

• Before: R3=FFFF_B024H, FFFF_B02CH=702EH

 DEC.W 8(R3) ;Object Code: ADF3 4008

After: FFFF_B02CH=702CH, Flags C, S, Z, V, B=0

• Before: FFFF_B034H=2EH

 DEC.B B034H:RAM ;Object Code: ADA3 B034

After: FFFF_B034H = 2DH, Flags C, Z, S, V, B =0

Instruction, Operands Word 0 Word 1 Word 2
DEC Rd1 {AA1H, Rd} 01H
DEC addr16 {ADAH, 1x11B} addr16
DEC addr32 {ADBH, 1x11B} addr[31:16] addr[15:0]
DEC (Rd) {ACH, 1x11B, Rd}
DEC soff14(Rd) {ADFH, Rd} {1xB, soff14}
DEC.W addr16 ADA7H addr16
DEC.W addr32 ADB7H addr[31:16] addr[15:0]
DEC.W (Rd) {AC7H, Rd}
DEC.W soff14(Rd) {ADFH, Rd} {01B, soff14}
DEC.B addr16 ADA3H addr16
DEC.B addr32 ADB3H addr[31:16] addr[15:0]
DEC.B (Rd) {AC3H, Rd}
DEC.B soff14(Rd) {ADFH, Rd} {00B, soff14}
Note: The ZNEO CPU assembler uses a SUB opcode to implement DEC Rd. The one-word
instruction ADD Rd, #-1 can be used if ADD Flags behavior is acceptable.
DEC Instruction UM018807-0208

ZNEO® CPU Core
User Manual

97
DI

Definition
Disable Interrupts

Syntax
DI

Operation
FLAGS[0] ← 0

Description
The Master Interrupt Enable (IRQE) bit in the Flags register is cleared to 0.
This prevents the ZNEO CPU from responding to interrupt requests.

Flags

Syntax and Opcodes

Example
 Before: IRQE=1 (Interrupt requests are enabled or disabled by their individual

control registers.)
 DI ;Object code: FFFB

After: IRQE=0 (Vectored interrupt requests are globally disabled.)

7 6 5 4 3 2 1 0

C Z S V B CIRQE IRQE
- - - - - - - 0

C No change.
Z No change.
S No change.
V No change.
B No change.
CIRQE No change.
IRQE Cleared to 0.

Instruction, Operands Word 0 Word 1 Word 2
DI FFFBH
UM018807-0208 DI Instruction

ZNEO® CPU Core
User Manual

98
DJNZ

Definition
Decrement and Jump if Non-Zero

Syntax
DJNZ dst, urel4

Operation
dst ← dst – 1
if dst != 0 {
PC ← PC + {FFFF_FFH, 111B, urel4, 0B}
}

Description
This instruction decrements the destination register and then performs a conditional jump
if the result is nonzero. Otherwise, the instruction following the DJNZ instruction is
executed.

In assembly language, the jump destination is typically specified as a label or 32-bit
address operand. The ZNEO CPU assembler automatically calculates a relative offset and
generates the appropriate DJNZ opcode. The jump destination address is the PC value plus
the calculated offset.

In object code, the offset operand is a 4-bit unsigned value corresponding to bits [4:1] of a
negative PC offset. In practical terms, if urel4=0, the offset is –16 words. If urel4=FH, the
offset is –1 word. The offset is measured from the instruction following DJNZ.

Flags

7 6 5 4 3 2 1 0

C Z S V B CIRQE IRQE
* * * * * - - -

C Set to 1 if the result generated a borrow. Otherwise 0.
Z Set to 1 if the result is zero. Otherwise 0.
S Set to 1 if the result msb is 1. Otherwise 0.
V Set to 1 if an arithmetic overflow occurs. Otherwise 0.
B Set to 1 if the initial destination value was 0. Otherwise 0.
CIRQE No change.
IRQE No change.
DJNZ Instruction UM018807-0208

ZNEO® CPU Core
User Manual

99
Flags are set based on the 32-bit decrement register value.

Syntax and Opcodes

Example
DJNZ controls a “loop” of instructions. In the following example, 9 words (18 bytes) are
moved from one buffer area in memory to another.

Instruction, Operands Word 0 Word 1 Word 2
DJNZ Rd, urel4 {FDH, urel4, Rd}

LD R6, #9H ;Load word counter with 9H Object Code: 3609

LEA R5,
B024H:RAM

;Load source pointer Object Code: 4515 B024

LEA R4,
B036H:RAM

;Load destination pointer Object Code: 4514 B036

LOOP: LD.UW R3,
(R5++)

;Load word and inc R5 Object Code: 1B53

LD.W (R4++), R3 ;Write word and inc R4 Object Code: 1734

DJNZ R6, LOOP ;Dec R6 and loop until
count=0

Object Code: FDD6

Note:
UM018807-0208 DJNZ Instruction

ZNEO® CPU Core
User Manual

100
EI

Definition
Enable Interrupts

Syntax
EI

Operation
FLAGS[0] ← 1

Description
The Master Interrupt Enable (IRQE) bit of the Flags register is set to 1. This allows the
ZNEO CPU to respond to interrupt requests.

Flags

Syntax and Opcodes

Example
 Before: IRQE=0 (Vectored interrupt requests are globally disabled.)
 EI ;Object code: FFFA

After: IRQE=1 (Interrupt requests are enabled or disabled by their individual
control registers.)

7 6 5 4 3 2 1 0

C Z S V B CIRQE IRQE
- - - - - - - 1

C No change.
Z No change.
S No change.
V No change.
B No change.
CIRQE No change.
IRQE Set to 1.

Instruction, Operands Word 0 Word 1 Word 2
EI FFFAH
EI Instruction UM018807-0208

ZNEO® CPU Core
User Manual

101
EXT

Definition
Extend

Syntax
EXT dst, src

Operation
dst ← src

Description
This instruction loads an 8-bit or 16-bit value from the source register into the destination
register with Signed or Unsigned extension. Byte (8-bit) or Word (16-bit) data size is
selected by adding a .B or .W, suffix, respectively, to the EXT mnemonic.
A “U” in the mnemonic suffix selects zero (unsigned) extension. An “S” in the
mnemonic suffix selects signed extension. See LD for instructions to read memory values
with extension.

Flags

Syntax and Opcodes

7 6 5 4 3 2 1 0

C Z S V B CIRQE IRQE
- * * - * - - -

C No change.
Z Set to 1 if the result is zero. Otherwise 0.
S Set to 1 if the result msb is 1. Otherwise 0.
V No change.
B Cleared to 0.
CIRQE No change.
IRQE No change.

Instruction, Operands Word 0 Word 1 Word 2
EXT.SW Rd, Rs {43H, Rs, Rd}
EXT.UW Rd, Rs {41H, Rs, Rd}
EXT.SB Rd, Rs {42H, Rs, Rd}
EXT.UB Rd, Rs {40H, Rs, Rd}
UM018807-0208 EXT Instruction

ZNEO® CPU Core
User Manual

102
Examples

• Before: R11=xxxx_xx86H

 EXT.SB R3, R11 ;Object code: 42B3

After: R3=FFFF_FF86H, Flags S=1; Z, B=0

• Before: R11=xxxx_xx76H

 EXT.UB R3, R11 ;Object code: 40B3

After: R3=0000_0076H, Flags S=1, Z, B=0
EXT Instruction UM018807-0208

ZNEO® CPU Core
User Manual

103
HALT

Definition
Halt Mode

Syntax
HALT

Operation
Enter Halt mode.

Description
The HALT instruction places the ZNEO CPU into HALT mode.

Refer to the device-specific Product Specification for information on HALT mode
operation.

Flags
Flags are not affected by this instruction.

Syntax and Opcodes

Instruction, Operands Word 0 Word 1 Word 2
HALT FFF9H

Note:
UM018807-0208 HALT Instruction

ZNEO® CPU Core
User Manual

104
ILL

Definition
Illegal Instruction

Operation
SP ← SP – 2
(SP) ← {00H, FLAGS[7:0]}
SP ← SP – 4
(SP) ← PC
PC ← (0000_0008H)

Description
This operation is performed whenever the CPU encounters an unimplemented instruction.
Because an unprogrammed memory element typically contains FFH, the opcode FFFFH
(ILL) is defined as an explicit Illegal Instruction Exception.

When the Program Counter encounters an illegal instruction, the Flags and Program
Counter value are pushed on the stack. The Program Counter does not increment, so the
Program Counter value that is pushed onto the stack points to the illegal instruction.

The ILL exception uses the System Exception vector quad at 0000_0008H in memory.
The vector quad contains a 32-bit address (service routine pointer). When an exception
occurs, the address in the vector quad replaces the value in the Program Counter (PC).
Program execution continues with the instruction pointed to by the new PC value.

After an ILL exception occurs, the ILL bit in the System Exception register (SYSEXCP)
is set to 1. After the first ILL exception has executed, additional ILL exceptions do not
push the Stack Pointer until the ILL bit is cleared. Writing a 1 to the ILL bit clears the bit
to 0.

Refer to the device-specific Product Specification for detailed information regarding
the System Exception register (SYSEXCP).

The Break opcode (BRK, 00H) operates as an ILL exception if On-Chip Debugger
breaks are disabled. For details about the On-Chip Debugger, see the device-specific
Product Specification.

An IRET instruction must not be used to end an Illegal Instruction exception service
routine. Because the stack contains the Program Counter value of the illegal instruction,
an IRET instruction returns code execution to this illegal instruction.

Flags
Flags are not affected by this instruction.

Notes:

Caution:
ILL Instruction UM018807-0208

ZNEO® CPU Core
User Manual

105
Syntax and Opcodes

Example
 Before: PC=00FD_044EH, SP=FFFF_DB22H,
 0000_0008H=0000_FE00H

 ILL ;Object Code: FFFF

After: PC=0000_FE00H, SP=FFFF_DB1CH,
 FFFF_DB1CH=00FD_044EH,
 FFFF_DB20H=00H, FFFF_DB21H=Flags[7:0]

Instruction, Operands Word 0 Word 1 Word 2
ILL FFFFH
UM018807-0208 ILL Instruction

ZNEO® CPU Core
User Manual

106
INC

Definition
Increment

Syntax
INC dst

Operation
dst ← dst + 1

Description
The contents of the destination operand are incremented by one.

Flags

Flags are set based on the memory destination size, or 32 bits for register
destinations.

7 6 5 4 3 2 1 0

C Z S V B CIRQE IRQE
* * * * * - - -

C Set to 1 if the result generated a carry. Otherwise 0.
Z Set to 1 if the result is zero. Otherwise 0.
S Set to 1 if the result msb is 1. Otherwise 0.
V Set to 1 if an arithmetic overflow occurs. Otherwise 0.
B Set to 1 if the initial destination value was 0. Otherwise 0.
CIRQE No change.
IRQE No change.

Note:
INC Instruction UM018807-0208

ZNEO® CPU Core
User Manual

107
Syntax and Opcodes

Examples

• Before: R3=FFFF_B024H, FFFF_B02CH=702EH

 INC.W 8(R3) ;Object Code: ADE3 4008

After: FFFF_B02CH=702FH, Flags C, S, Z, V, B=0

• Before: FFFF_B034H=2EH

 INC.B B034H:RAM ;Object Code: ADA2 B034

After: FFFF_B034H = 2FH, Flags C, Z, S, V, B =0

Instruction, Operands Word 0 Word 1 Word 2
INC Rd {8H, Rd, 01H}1

INC addr16 {ADAH, 1x10B} addr16
INC addr32 {ADBH, 1x10B} addr[31:16] addr[15:0]
INC (Rd) {ACH, 1x10B, Rd}
INC soff14(Rd) {ADEH, Rd} {1xB, soff14}
INC.W addr16 ADA6H addr16
INC.W addr32 ADB6H addr[31:16] addr[15:0]
INC.W (Rd) {AC6H, Rd}
INC.W soff14(Rd) {ADEH, Rd} {01B, soff14}
INC.B addr16 ADA2H addr16
INC.B addr32 ADB2H addr[31:16] addr[15:0]
INC.B (Rd) {AC2H, Rd}
INC.B soff14(Rd) {ADEH, Rd} {00B, soff14}
1The ZNEO CPU assembler uses an ADD opcode to implement INC Rd.
UM018807-0208 INC Instruction

ZNEO® CPU Core
User Manual

108
IRET

Definition
Interrupt Return

Syntax
IRET

Operation
Normal IRET: Chained IRET:

PC ← (SP) PC ← Pending Interrupt Vector
SP ← SP + 4 FLAGS[0] ← 0
FLAGS[7:0] ← +1(SP)
SP ← SP + 2

Description
This instruction is issued at the end of an interrupt service routine. It performs one of the
following two operations:

• If no interrupts are pending or the Chained Interrupt Enable flag (CIRQE) is 0, execu-
tion of IRET restores the Program Counter and the Flags register from the stack.

• If one or more vectored interrupts are pending and the CIRQE flag is 1, executing the
IRET instruction passes execution directly to the highest-priority pending interrupt
service routine. The contents of the stack are not changed.

For details on chained interrupts, see Returning From a Vectored Interrupt on page 43.

Any Push or other instructions in the service routine that decrement the stack pointer
must be followed by matching Pop or increment instructions to ensure the Stack Pointer
is at the correct location when IRET is executed. Otherwise, the wrong address loads into
the Program Counter and the program cannot operate properly.

Flags
If IRET executes normally, it restores the Flags register to its state prior to the first
interrupt in the chain.

If IRET chains to another interrupt service routine, it clears the IRQE flag and leaves all
other flags unchanged.

Caution:
IRET Instruction UM018807-0208

ZNEO® CPU Core
User Manual

109
Syntax and Opcodes

Example
 Before: PC=0035_292EH, SP=FFFF_DB1CH,

 FFFF_DB21H=Pre-interrupt Flags, FFFF_DB20H=00H
 FFFF_DB1CH=0000_0454H

 IRET ;Object Code: FFFD

After: PC=0000_0454H,
Flags=Pre-interrupt state,
SP=FFFF_DB22H

Instruction, Operands Word 0 Word 1 Word 2
IRET FFFDH
UM018807-0208 IRET Instruction

ZNEO® CPU Core
User Manual

110
JP

Definition
Jump

Syntax
JP dst

Operation
PC ← destination address

Description
The unconditional jump replaces the contents of the Program Counter with the
destination address. Program control then passes to the instruction addressed by
the Program Counter.

In assembly language, the destination is typically specified as a label or 32-bit address
operand. When possible, the ZNEO CPU assembler automatically calculates a relative off-
set and generates relative JP opcodes to produce more efficient object code. For a relative
JP, the destination address is the PC value plus two times the relative operand value.

In the JP (Rs) syntax, if the contents of Rs are odd the least significant bit is discarded, so
that the call destination address is always an even number.

To invoke a 32-bit addressed jump explicitly, use the JPA instruction.

Flags
Flags are not affected by this instruction.

Syntax and Opcodes

Example
 Before: PC=0000_0472H, R7=0000_3521H
 JP (R7) ;Object Code: F207

After: PC=0000_3520

Instruction, Operands Word 0 Word 1 Word 2
JP (Rs) {F20H, Rs}
JP rel12 {CH, rel12}
JP rel24 {F0H, rel[23:16]} rel[15:0]
JP Instruction UM018807-0208

ZNEO® CPU Core
User Manual

111
JPA

Definition
Jump Absolute

Syntax
JP dst

Operation
PC ← dst

Description
JPA replaces the contents of the Program Counter with the 32-bit immediate operand.
Program control then passes to the instruction addressed by the Program Counter.

If the immediate operand is odd, the least significant bit is discarded so that the call
destination address is always an even number.

The JPA instruction is used to explicitly invoke the 32-bit immediate jump opcode in
situations when a fixed opcode size is desired, such as a jump table.

Flags
Flags are not affected by this instruction.

Syntax and Opcodes

Example
 Before: PC=0000_044EH
 JPA 00352920H ;Object Code: F230 0035 2920

After: PC=0035_2920

Instruction, Operands Word 0 Word 1 Word 2
JPA imm32 F230H imm[31:16] imm[15:0]
UM018807-0208 JPA Instruction

ZNEO® CPU Core
User Manual

112
JP cc

Definition
Jump Conditionally

Syntax
JP cc, dst

Operation
if cc (condition code) is true (1){
PC ← destination address
}

Description
A conditional jump transfers program control to the destination address if the
condition specified by cc is true. Otherwise, the instruction following the JP
instruction is executed. See the Condition Codes on page 11 for more information.

In assembly language, the destination is typically specified as a label or 32-bit address
operand. The ZNEO CPU assembler automatically calculates a relative offset and gener-
ates the appropriate JP cc opcode.

To specify an explicit relative offset, use the expression $+offset_in_bytes. The ‘$’ symbol
returns the address of the current instruction. The assembler converts this expression into
the appropriate object code operand.

Flags
Flags are not affected by this instruction.

Syntax and Opcodes

Example
The following instructions loop through successive memory addresses (pointed to by
register R2) until the LD instruction loads a 00H value.

LOOP:

 LD.UB R0, (R2++) ;Object Code: 1920

 JP B, LOOP ;Object Code: E0FE

Instruction, Operands Word 0 Word 1 Word 2
JP cc, rel8 {EH, cc4, rel8}
JP cc, rel16 {F22H, cc4} rel[15:0]
JP cc Instruction UM018807-0208

ZNEO® CPU Core
User Manual

113
LD

Definition
Load

Syntax
LD dst, src

Operation
dst ← src

Description
The contents of the source operand are loaded into the destination operand. The contents
of the source operand are unaffected. The default data size is 32 bits. Byte (8-bit) or Word
(16-bit) data size can usually be selected by adding a .B or .W, suffix, respectively, to the
LD mnemonic.

When a 32-bit value is loaded into an 8- or 16-bit memory location, the value is
truncated to fit the destination size.

When an 8- or 16-bit value is loaded into a larger location, it must be extended to fill all
the destination bits. A “U” in the mnemonic suffix selects zero (unsigned) extension. An
“S” in the mnemonic suffix selects signed extension. An immediate source operand is
always sign extended.

A “--” prefix in a register-indirect operand indicates that the address register is
decremented before the operation. A “++” suffix indicates that the address register is
incremented after the operation. Register predecrement and postincrement do not affect
flags. See EXT for instructions to load register values with extension.

See LEA for synonyms to LD opcodes that are useful for loading an effective address.

See PUSH and POP for instructions that store and retrieve stack data.
UM018807-0208 LD Instruction

ZNEO® CPU Core
User Manual

114
Flags

Syntax and Opcodes

7 6 5 4 3 2 1 0

C Z S V B CIRQE IRQE
- - - - * - - -

C No change.
Z No change.
S No change.
V No change.
B Set to one if the source is in memory and the source value is 0. Cleared to 0

if the source is in memory and the source value is nonzero. No change if the
source is a register or immediate value.

CIRQE No change.
IRQE No change.

Instruction, Operands Word 0 Word 1 Word 2
LD Rd, #imm32 {452H, Rd} imm[31:16] imm[15:0]
LD Rd, #simm17 {45H, 000B, simm[16], Rd} simm[15:0]
LD Rd, #simm8 {3H, Rd, simm8}
LD Rd, Rs {44H, Rs, Rd}
LD Rd, addr16 {034H, Rd} addr16
LD Rd, addr32 {03CH, Rd} addr[31:16] addr[15:0]
LD Rd, (Rs) {12H, Rs, Rd}
LD Rd, (Rs++) {13H, Rs, Rd}
LD Rd, soff14(Rs) {48H, Rs, Rd} {0xB, soff14}
LD Rd, soff14(PC) {002H, Rd} {0xB, soff14}
LD Rd, soff6(FP) {5H, 11B, soff6, Rd}
LD addr16, Rs {037H, Rs} addr16
LD addr32, Rs {03FH, Rs} addr[31:16] addr[15:0]
LD (Rd), #imm32 {09DH, Rd} imm[31:16] imm[15:0]
LD (Rd), #simm16 {097H, Rd} simm16
LD (Rd), Rs {0BH, Rs, Rd}
LD soff14(Rd), Rs {4AH, Rs, Rd} {xxB, soff14}
LD soff6(FP), Rs {5H, 10B, soff6, Rs}
LD (--Rd), #imm32 {09EH, Rd} imm[31:16] imm[15:0]
LD Instruction UM018807-0208

ZNEO® CPU Core
User Manual

115
LD (--Rd), #simm16 {099H, Rd} simm16
LD (--Rd), Rs {10H, Rs, Rd}
LD (Rd++), #imm32 {09FH, Rd} imm[31:16] imm[15:0]
LD (Rd++), #simm16 {09BH, Rd} simm16
LD (Rd++), Rs {11H, Rs, Rd}
LD.W addr16, Rs {036H, Rs} addr16
LD.W addr32, Rs {03EH, Rs} addr[31:16] addr[15:0]
LD.W (Rd), #imm16 {096H, Rd} imm16
LD.W (Rd), Rs {0FH, Rs, Rd}
LD.W soff14(Rd), Rs {4BH, Rs, Rd} {x1B, soff14}
LD.W soff6(FP), Rs {5H, 01B, soff6, Rs}
LD.W (--Rd), #imm16 {098H, Rd} imm16
LD.W (--Rd), Rs {16H, Rs, Rd}
LD.W (Rd++), #imm16 {09AH, Rd} imm16
LD.W (Rd++), Rs {17H, Rs, Rd}
LD.SW Rd, addr16 {033H, Rd} addr16
LD.SW Rd, addr32 {03BH, Rd} addr[31:16] addr[15:0]
LD.SW Rd, (Rs) {1EH, Rs, Rd}
LD.SW Rd, (Rs++) {1FH, Rs, Rd}
LD.SW Rd, soff14(Rs) {49H, Rs, Rd} {11B, soff14}
LD.SW Rd, soff14(PC) {003H, Rd} {11B, soff14}
LD.SW Rd, soff6(FP) {6H, 11B, soff6, Rd}
LD.UW Rd, addr16 {032H, Rd} addr16
LD.UW Rd, addr32 {03AH, Rd} addr[31:16] addr[15:0]
LD.UW Rd, (Rs) {1AH, Rs, Rd}
LD.UW Rd, (Rs++) {1BH, Rs, Rd}
LD.UW Rd, soff14(Rs) {49H, Rs, Rd} {01B, soff14}
LD.UW Rd, soff14(PC) {003H, Rd} {01B, soff14}
LD.UW Rd, soff6(FP) {6H, 01B, soff6, Rd}
LD.B addr16, Rs {035H, Rs} addr16
LD.B addr32, Rs {03DH, Rs} addr[31:16] addr[15:0]
LD.B (Rd), #imm8 {09CH, Rd} {xxH, imm8}
LD.B (Rd), Rs {0EH, Rs, Rd}
LD.B soff14(Rd), Rs {4BH, Rs, Rd} {x0B, soff14}

Instruction, Operands Word 0 Word 1 Word 2
UM018807-0208 LD Instruction

ZNEO® CPU Core
User Manual

116
Examples

• Before: R13=xxxx_xxxxH

 LD R13, #34H ;Object Code: 3D34

After: R13=0000_0034H

• Before: R13=xxxx_xxxxH

 LD R13, #-4H ;Object Code: 3DFC

After: R13=FFFF_FFFCH

• Before: FFFF_B034H=FCH

 LD.UB R12, B034H:RAM ;Object Code: 030C B034

After: R12= 0000_00FCH, Flag B=0

LD.B soff6(FP), Rs {5H, 00B, soff6, Rs}
LD.B (--Rd), #imm8 {094H, Rd} {xxH, imm8}
LD.B (--Rd), Rs {14H, Rs, Rd}
LD.B (Rd++), #imm8 {095H, Rd} {xxH, imm8}
LD.B (Rd++), Rs {15H, Rs, Rd}
LD.SB Rd, (Rs++) {1DH, Rs, Rd}
LD.SB Rd, addr16 {031H, Rd} addr16
LD.SB Rd, addr32 {039H, Rd} addr[31:16] addr[15:0]
LD.SB Rd, (Rs) {1CH, Rs, Rd}
LD.SB Rd, soff14(Rs) {49H, Rs, Rd} {10B, soff14}
LD.SB Rd, soff14(PC) {003H, Rd} {10B, soff14}
LD.SB Rd, soff6(FP) {6H, 10B, soff6, Rd}
LD.UB Rd, (Rs++) {19H, Rs, Rd}
LD.UB Rd, addr16 {030H, Rd} addr16
LD.UB Rd, addr32 {038H, Rd} addr[31:16] addr[15:0]
LD.UB Rd, (Rs) {18H, Rs, Rd}
LD.UB Rd, soff14(Rs) {49H, Rs, Rd} {00B, soff14}
LD.UB Rd, soff14(PC) {003H, Rd} {00B, soff14}
LD.UB Rd, soff6(FP) {6H, 00B, soff6, Rd}

Instruction, Operands Word 0 Word 1 Word 2
LD Instruction UM018807-0208

ZNEO® CPU Core
User Manual

117
• Before: R12=xxxx_xx45H

 LD.B B034H:RAM, R12 ;Object Code: 035C B034

After: FFFF_B034H=45H

• Before: R12=FFFF_B034H, FFFF_B034H=FFH

 LD.SB R13, (R12) ;Object Code: 1CCD

After: R13=FFFF_FFFFH, Flag B=0

• Before: R13=FFFF_B07FH

 LD.W (R13), #00FCH ;Object Code: 096D 00FC

After: FFFF_B07FH=00FCH

• Before: R13=FFFF_B07FH, FFFF_B079H=F723H

 LD.SW R12, -6(R13) ;Object Code: 49DC FFFA

After: R12=FFFF_F723HH, Flag B=0

• Before: PC=0000_B07FH, 0000_B079H=F723H

 LD.SW R12, -6(PC) ;Object Code: 003C FFF6

After: R12=FFFF_F723HH, Flag B=0

• Before: FP=FFFF_B07FH, FFFF_B079H=F723H

 LD.SW R12, -6(FP) ;Object Code: 6FAC

After: R12=FFFF_F723HH, Flag B=0

• Before: R13=FFFF_DB24H, R6=FFFF_8642

 LD.W (--R13), R6 ;Object Code: 166D

After: FFFF_DB22H=8642, R13=FFFF_DB22H

• Before: R13=FFFF_DB22H

 LD (--R13), #42H ;Object Code: 099D 0042

After: FFFF_DB1EH=0000_0042H, R13=FFFF_DB1EH
UM018807-0208 LD Instruction

ZNEO® CPU Core
User Manual

118
• Before: R13=FFFF_DB22H, FFFF_DB22H=8642

 LD.SW R6, (R13++) ;Object Code: 1FD6

After: R6=FFFF_8642, R13=FFFF_DB24H, Flag B=0
LD Instruction UM018807-0208

ZNEO® CPU Core
User Manual

119
LD cc

Definition
Load Condition Code

Syntax
LD cc, dst

Operation
dst ← cc

Description
This instruction loads the destination register with a 1 if the specified condition is
currently True. Otherwise it clears the destination register to 0.

Flags
Flags are not affected by this instruction.

Syntax and Opcodes

Examples

• Before: S=1, V=0

 LD GE, R13 ;Object Code: 019D

After: R13=1

• Before: S=1, V=1

 LD GE, R13 ;Object Code: 019D

After: R13=0

Instruction, Operands Word 0 Word 1 Word 2
LD cc, Rd {01H, cc4, Rd}
UM018807-0208 LD cc Instruction

ZNEO® CPU Core
User Manual

120
LDES

Definition
Load and Extend Sign

Syntax
LDES dst

Operation
dst[31:0] ← S

Description
This instruction loads the destination register with FFFF_FFFFH if the S flag is 1.
Otherwise it clears the destination register to 0000_0000H. This instruction can be used in
multi-precision arithmetic to extend the sign of a low-order result into a
register used for high-order values.

Flags
Flags are not affected by this instruction.

Syntax and Opcodes

Examples

• Before: S=1

 LDES R13 ;Object Code: 453D

After: R13=FFFF_FFFFH

• Before: S=0

 LDES R13 ;Object Code: 453D

After: R13=0000_0000H

Instruction, Operands Word 0 Word 1 Word 2
LDES Rd {453H, Rd}
LDES Instruction UM018807-0208

ZNEO® CPU Core
User Manual

121
LEA

Definition
Load Effective address

Syntax
LEA dst, src

Operation
dst ← effective address

Description
The LEA instruction is used to load the destination register with a pointer to a memory
location. If an indirect-register source operand is used, the effective address pointed to by
the operand is loaded into the destination register.

The LEA opcodes that take an immediate source operand are assembler synonyms for LD
instructions with the same opcodes. Programs can use LEA with an address operand when
the intention is to load a base address into the destination register. For more information,
see Loading an Effective Address on page 34.

When the assembler encounters an LD instruction with an immediate source operand, it
attempts to use the shortest possible form, so it may be possible for some LD instructions
to disassemble as LEA.

Flags
Flags are not affected by this instruction.

Syntax and Opcodes

Example
 Before: FP=FFFF_B016H
 LEA R11, 15H(FP) ;Object code: 4D5B

After: R11=FFFF_B02BH

Instruction, Operands Word 0 Word 1 Word 2
LEA Rd, soff14(PC) {002H, Rd} {1xB, soff14}
LEA Rd, soff14(Rs) {48H, Rs, Rd} {1xB, soff14}
LEA Rd, soff6(FP) {4H, 11B, soff6, Rd}
LEA Rd, imm32 {452H, Rd} imm[31:16] imm[15:0]
LEA Rd, simm17 {45H, 000B, simm[16], Rd} simm[15:0]
UM018807-0208 LEA Instruction

ZNEO® CPU Core
User Manual

122
LINK

Definition
Link Frame Pointer

Syntax
LINK #uimm8

Operation
SP ← SP – 4
(SP) ← R14

R14 ← SP

SP ← SP– uimm8

Description
This instruction establishes an argument frame pointer in register R14 and allocates local
variable space on the stack. The FP register can then be used for efficient indirect access to
subroutine arguments and variables.

The LINK instruction performs the following steps:

1. Preserve the existing contents of R14 by pushing it onto the stack.

2. Load the contents of the stack pointer into R14.

3. Subtract the value contained in the source operand from the stack pointer.

Flags
Flags are not affected by this instruction.

Syntax and Opcodes

Instruction, Operands Word 0 Word 1 Word 2
LINK #uimm8 {08H, uimm8}
LINK Instruction UM018807-0208

ZNEO® CPU Core
User Manual

123
MUL

Definition
Multiply

Syntax
MUL dst, src

Operation
dst ← dst × src

Description
This instruction performs a multiplication of two 32-bit values with an 32-bit result.
The 32-bit result is written to the destination register. The source register is not changed.
Results larger than FFFF_FFFFH are truncated to 32 bits. If a larger result is required,
use SMUL or UMUL.

Flags

Flags are set based on the 32-bit destination register value.

7 6 5 4 3 2 1 0

C Z S V B CIRQE IRQE
- * * 0 0 - - -

C No change.
Z Set to 1 if the result is zero. Otherwise 0.
S Set to 1 if bit [31] of the result is 1. Otherwise 0.
V Cleared to 0.
B Cleared to 0.
CIRQE No change.
IRQE No change.

Note:
UM018807-0208 MUL Instruction

ZNEO® CPU Core
User Manual

124
Syntax and Opcodes

Example
 Before: R4=0000_0086H, R5=8000_0053H
 MUL R4, R5 ;Object Code: B254

After: R4=0000_2B72H, Flags Z, S, V, B=0

Instruction, Operands Word 0 Word 1 Word 2
MUL Rd, Rs {B2H, Rs, Rd}
MUL Instruction UM018807-0208

ZNEO® CPU Core
User Manual

125
NEG

Definition
Negate

Syntax
 NEG dst

Operation
dst ← 0 – dst

Description
The contents of the destination operand are subtracted from zero, and the result is written
to the destination. This effectively performs a two’s complement negation.

Flags

Flags are set based on the 32-bit destination register value.

Syntax and Opcodes

7 6 5 4 3 2 1 0

C Z S V B CIRQE IRQE
* * * * * - - -

C Set to 1 if the result generated a borrow. Otherwise 0.
Z Set to 1 if the result is zero. Otherwise 0.
S Set to 1 if the result msb is 1. Otherwise 0.
V Set to 1 if an arithmetic overflow occurs. Otherwise 0.
B Set to 1 if the initial destination value was 0. Otherwise 0.
CIRQE No change.
IRQE No change.

Instruction, Operands Word 0 Word 1 Word 2
NEG Rd {455H, Rd}

Note:
UM018807-0208 NEG Instruction

ZNEO® CPU Core
User Manual

126
Example
 Before: R7=7F37_B2D3H (0111_1111_0011_0111_1011_0010_1101_0011B)

 NEG R7 ;Object code: 4557

After: R7=80C8_4D2DH (1000_0000_1100_1000_0100_1101_0010_1101B),
Flags S, C=1; Z, V, B=0
NEG Instruction UM018807-0208

ZNEO® CPU Core
User Manual

127
NOFLAGS

Definition
No Flags Modifier

Syntax
NFLAGS

Operation
Modify the next instruction to suppress setting flags as a result of the operation.

Description
This modifier prefix suppresses the setting of condition flags as a result of the next instruc-
tion. The operation is performed and a result (if any) is written, but the result does not
affect the Flags register.

The NOFLAGS modifier does not suppress IRET, POPF, or any LD or POP
instruction that overwrites the FLAGS register directly, for example, LD.B
FLAGS:IODATA, R0.

Flags
Flags are not affected by this instruction or the next instruction, unless the next instruction
overwrites the FLAGS register directly.

Syntax and Opcodes

Example
 Before: R3=16H, R11=20H

 NOFLAGS ;Object Code: 0005

 SUB R3, R11 ;Object code: A1B3

After: R3=FFFF_FFF6H, Flags unchanged

Instruction, Operands Word 0 Word 1 Word 2
NOFLAGS 0005H

Note:
UM018807-0208 NOFLAGS Instruction

ZNEO® CPU Core
User Manual

128
NOP

Definition
No Operation

Syntax
NOP

Operation
None

Description
No action is performed by this instruction. It is typically used as a cycle timing delay.

Flags
Flags are not affected by this instruction.

Syntax and Opcodes

Instruction, Operands Word 0 Word 1 Word 2
NOP FFFEH
NOP Instruction UM018807-0208

ZNEO® CPU Core
User Manual

129
OR

Definition
Logical OR

Syntax
OR dst, src

Operation
dst ← dst OR src

Description
The source operand is logically ORed with the destination operand and the destination
operand stores the result. The contents of the source operand are unaffected. An OR
operation stores 1 in the destination bit when either of the corresponding bits in the two
operands is a 1. Otherwise, the OR operation stores a 0 bit. Table 22 summarizes the OR
operation.

Table 22. Truth Table for OR

dst src Result (dst)

0 0 0

1 0 1

0 1 1

1 1 1
UM018807-0208 OR Instruction

ZNEO® CPU Core
User Manual

130
Flags

Flags are set based on the memory destination size, or 32 bits for register
destinations.

7 6 5 4 3 2 1 0

C Z S V B CIRQE IRQE
- * * 0 * - - -

C No change.
Z Set to 1 if the result is zero. Otherwise 0.
S Set to 1 if the result msb is 1. Otherwise 0.
V Cleared to 0.
B Set to 1 if the initial destination or source value was 0. Otherwise 0.
CIRQE No change.
IRQE No change.

Note:
OR Instruction UM018807-0208

ZNEO® CPU Core
User Manual

131
Syntax and Opcodes

Instruction, Operands Word 0 Word 1 Word 2
OR Rd, #imm32 {AABH, Rd} imm[31:16] imm[15:0]
OR Rd, #uimm16 {AA3H, Rd} uimm16
OR Rd, Rs {A3H, Rs, Rd}
OR Rd, addr16 {734H, Rd} addr16
OR Rd, addr32 {73CH, Rd} addr[31:16] addr[15:0]
OR Rd, soff13(Rs) {7BH, Rs, Rd} {100B, soff13}
OR addr16, Rs {737H, Rs} addr16
OR addr32, Rs {73FH, Rs} addr[31:16] addr[15:0]
OR (Rd), #imm32 {ABBH, Rd} imm[31:16] imm[15:0]
OR (Rd), #simm16 {AD3H, Rd} simm16
OR soff13(Rd), Rs {7BH, Rs, Rd} {111B, soff13}
OR.W addr16, Rs {736H, Rs} addr16
OR.W addr32, Rs {73EH, Rs} addr[31:16] addr[15:0]
OR.W (Rd), #imm16 {AB3H, Rd} imm16
OR.W soff13(Rd), Rs {7BH, Rs, Rd} {110B, soff13}
OR.SW Rd, addr16 {733H, Rd} addr16
OR.SW Rd, addr32 {73BH, Rd} addr[31:16] addr[15:0]
OR.SW Rd, soff13(Rs) {7BH, Rs, Rd} {011B, soff13}
OR.UW Rd, addr16 {732H, Rd} addr16
OR.UW Rd, addr32 {73AH, Rd} addr[31:16] addr[15:0]
OR.UW Rd, soff13(Rs) {7BH, Rs, Rd} {010B, soff13}
OR.B addr16, Rs {735H, Rs} addr16
OR.B addr32, Rs {73DH, Rs} addr[31:16] addr[15:0]
OR.B (Rd), #imm8 {AD9H, Rd} {xH, x011B, imm8}
OR.B soff13(Rd), Rs {7BH, Rs, Rd} {101B, soff13}
OR.SB Rd, addr16 {731H, Rd} addr16
OR.SB Rd, addr32 {739H, Rd} addr[31:16] addr[15:0]
OR.SB Rd, soff13(Rs) {7BH, Rs, Rd} {001B, soff13}
OR.UB Rd, addr16 {730H, Rd} addr16
OR.UB Rd, addr32 {738H, Rd} addr[31:16] addr[15:0]
OR.UB Rd, soff13(Rs) {7BH, Rs, Rd} {000B, soff13}
UM018807-0208 OR Instruction

ZNEO® CPU Core
User Manual

132
Examples

• Before: R1[7:0]=38H (0011_1000B),
R14[7:0]=8DH (1000_1101B)

 OR R1, R14 ;Object Code: A3E1

After: R1[7:0]=BDH (1011_1101), Flags Z, V, S, B=0

• Before: R4[31:8]=FFFF_FFH, R4[7:0]=79H (0111_1001B),
FFFF_B07BH=EAH (1110_1010B)

 OR.SB R4, B07BH:RAM ;Object Code: 7314 B07B

After: R4[31:8]=FFFF_FFH, R4[7:0]=FBH (1111_1011B), Flags S=1; Z, V, B=0

• Before: R4[31:8]=FFFF_FFH, R4[7:0]=79H (0111_1001B),
FFFF_B07BH=EAH (1110_1010B)

 OR.UB R4, B07BH:RAM ;Object Code: 7304 B07B

After: R4[31:8]=FFFF_FFH, R4[7:0]=FBH (1111_1011B), Flags S=1; Z, V, B=0

• Before: R13=FFFF_B07AH, FFFF_B07AH=C3F7H (1100_0011_1111_0111B)

 OR.W (R13), #80F0H ;Object Code: AB3D 80F0

After: FFFF_B07AH=C3F7H (1100_0011_1111_0111B), Flags S=1; Z, V, B=0
OR Instruction UM018807-0208

ZNEO® CPU Core
User Manual

133
POP

Definition
POP Value

Syntax
POP dst

Operation

Description
The POP instruction loads the destination with the byte, word, or quad pointed to by the
Stack Pointer, and then increments the Stack Pointer (R15) by 1, 2, or 4.

The default data size is 32 bits. Byte (8-bit) or Word (16-bit) data size can be selected by
adding an .SB, .UB, .SW, or .UW suffix to the POP mnemonic. The “U” and “S” symbols
in the suffix select Unsigned or Signed extension, respectively.

POP is implemented using LD register-indirect opcodes with postincrement.
See LD for more instructions that load and store data.

POP:
dst ← (SP)

SP ← SP + 4

POP.B:
dst ← (SP)
SP ← SP + 1

POP.W:
dst ← (SP)
SP ← SP + 2
UM018807-0208 POP Instruction

ZNEO® CPU Core
User Manual

134
Flags

Syntax and Opcodes

Example
 Before: SP=FFFF_DB22H, FFFF_DB22H=8642
 POP.SW R6 ;Object Code: 1FF6

After: R6=FFFF_8642, SP=FFFF_DB24H, Flag B=0

7 6 5 4 3 2 1 0

C Z S V B CIRQE IRQE
- - - - * - - -

C No change.
Z No change.
S No change.
V No change.
B Set to 1 if the popped value is 0. Cleared to 0 if the popped value is

nonzero.
CIRQE No change.
IRQE No change.

Instruction, Operands Word 0 Word 1 Word 2
POP Rd {13FH, Rd}
POP.SW Rd {1FFH, Rd}
POP.UW Rd {1BFH, Rd}
POP.SB Rd {1DFH, Rd}
POP.UB Rd {19FH, Rd}
POP Instruction UM018807-0208

ZNEO® CPU Core
User Manual

135
POPF

Definition
POP Flags

Syntax
POPF

Operation
FLAGS[7:0] ← + 1(SP)
SP ← SP + 2

Description
The POPF instruction increments the Stack Pointer (R15), loads the byte pointed to
by the Stack Pointer into the Flags register, and increments the Stack Pointer.
POPF increments the Stack Pointer twice so its alignment is not changed.

Flags
The Flags register is overwritten by the popped byte.

Syntax and Opcodes

Example
 Before: SP=FFFF_DB22H,
 FFFF_DB22H=00H, FFFF_DB23H=B1H (1011_0001B)

 POPF ;Object Code: 0003

 After: SP=FFFF_DB24H, Flags=B1H (C, S, V, IRQE=1; Z, B=0)

Instruction, Operands Word 0 Word 1 Word 2
POPF 0003H
UM018807-0208 POPF Instruction

ZNEO® CPU Core
User Manual

136
POPMLO

POPMHI

Definition
POP Multiple

Syntax
POPMLO mask
POPMHI mask

Operation

Description
Execution of the POPMLO or POPMHI instruction loads multiple 32-bit values from the
stack to the registers indicated by the 8-bit immediate mask operand. Each bit in the mask
represents an ALU register in the range R0–R7 or R8–R15, respectively, for POPMLO or
POPMHI. Values are popped to registers in numerical order to maintain symmetry with
the PUSHM instructions.

The ZNEO CPU assembler allows mask bits for this instruction to be enumerated in a list
delimited by angle brackets. The list can be in any order.

For example, the following statements pop the values of R0, R5, R6, R7, and R13 in
numerical order:

 POPMLO <R5-R7, R0>
 POPMHI <R13>

The assembler implements a combined POPM mnemonic that generates appropriate POP-
MLO and POPMHI opcodes based on a single assembly language statement.

For example, the following statement produces the same object code as the previous two-
line example:

 POPM <R5-R7, R0, R13>

POPMLO:
for n=0 to 7

if mask[n]=1
 (SP) ← Rn
 SP ← SP + 4

endif
endfor

POPMHI:
for n=8 to 15

if mask[n–8]=1
(SP) ← Rn
SP ← SP + 4
endif

endfor
POPMLO Instruction UM018807-0208

ZNEO® CPU Core
User Manual

137
The assembler also accepts statements using the combined POPM mnemonic with an
immediate mask operand.

Flags

Syntax and Opcodes

Example

• Before: SP=FFFF_DB22H,
 FFFF_DB22H=0000_1234,
 FFFF_DB26H=0005_5678,
 FFFF_DB2AH=0006_9ABC,
 FFFF_DB2EH=0007_DEF0,
 FFFF_DB34H=000D_4321

 POPM <R0, R5-R7, R13> ;Object Code: 06E1 0720

After: SP=FFFF_DB38H,
 R0=0000_1234,
 R5=0005_5678,
 R6=0006_9ABC,
 R7=0007_DEF0,
 R13=000D_4321, Flag B=0

7 6 5 4 3 2 1 0

C Z S V B CIRQE IRQE
- - - - * - - -

C No change.
Z No change.
S No change.
V No change.
B Set to 1 if the last value popped is 0. Cleared to 0 if the last value popped is

nonzero.
CIRQE No change.
IRQE No change.

Instruction, Operands Word 0 Word 1 Word 2
POPMLO mask {06H, imm8}
POPMHI mask {07H, imm8}
UM018807-0208 POPMHI Instruction

ZNEO® CPU Core
User Manual

138
• The following syntax produces the same object code as the previous example:

 POPM #20E1H ;Object Code: 06E1 0720
POPMHI Instruction UM018807-0208

ZNEO® CPU Core
User Manual

139
PUSH

Definition
PUSH Value

Syntax
PUSH src

Operation

Description
The PUSH instruction decrements the Stack Pointer (R15) by 1, 2, or 4 and loads the
source value into the byte, word, or quad pointed to by the Stack Pointer.

The default data size is 32 bits. Byte (8-bit) or Word (16-bit) data size can be selected by
adding a .B or .W, suffix, respectively, to the PUSH mnemonic.

When a 32-bit value is pushed into an 8- or 16-bit stack location, the value is truncated to
fit the destination size. When an 8- or 16-bit immediate value is pushed into a larger loca-
tion, it is always sign extended.

PUSH is implemented using LD register-indirect opcodes with predecrement.
See LD for more instructions that load and store data.

Flags
Flags are not affected by this instruction.

Syntax and Opcodes

PUSH:
SP ← SP – 4

(SP) ← src

PUSH.B:
SP ← SP – 1
(SP) ← src

PUSH.W:
SP ← SP – 2
(SP) ← src

Instruction, Operands Word 0 Word 1 Word 2
PUSH #imm32 {09EFH} imm[31:16] imm[15:0]
PUSH #simm16 {099FH} simm16
PUSH #simm8 {0DH, simm8}
PUSH Rs {10H, Rs, FH}
PUSH.W #imm16 {098FH} imm16
PUSH.W #simm8 {0CH, simm8}
PUSH.W Rs {16H, Rs, FH}
PUSH.B #imm8 {0AH, imm8}
UM018807-0208 PUSH Instruction

ZNEO® CPU Core
User Manual

140
Examples

• Before: SP=FFFF_DB24H, R6=FFFF_8642

 PUSH.W R6 ;Object Code: 166F

After: FFFF_DB22H=8642, SP=FFFF_DB22H

• Before: SP=FFFF_DB22H

 PUSH #42H ;Object Code: 0D42

After: FFFF_DB20H=00H, FFFF_DB21H=42H,
FFFF_DB1EH=00H, FFFF_DB1FH=00H,
SP=FFFF_DB1EH

• Before: SP=FFFF_DB22H

 PUSH.B #42H ;Object Code: 0A42

After: FFFF_DB21H=42H, SP=FFFF_DB21H

• Before: SP=FFFF_DB22H

 PUSH.W #42H ;Object Code: 0C42

After: FFFF_DB20H=00H, FFFF_DB21H=42H,
 SP=FFFF_DB20H

PUSH.B #imm8 {094FH} {xxH, imm8}
PUSH.B Rs {14H, Rs, FH}

Instruction, Operands Word 0 Word 1 Word 2
PUSH Instruction UM018807-0208

ZNEO® CPU Core
User Manual

141
PUSHF

Definition
PUSH Flags

Syntax
PUSHF

Operation
SP ← SP – 2
(SP) ← {00H, FLAGS[7:0]}

Description
The PUSHF instruction decrements the Stack Pointer (R15), loads the Flags register into
the byte pointed to by the Stack Pointer, and then decrements the Stack Pointer again.
PUSHF decrements the Stack Pointer twice so its alignment is not changed.

Flags
Flags are not affected by this instruction.

Syntax and Opcodes

Example
 Before: SP=FFFF_DB24H, Flags=B1H (C, S, V, IRQE=1; Z, B=0)
 PUSHF ;Object Code: 0002

After: SP=FFFF_DB22H,
FFFF_DB22H=00H, FFFF_DB23H=B1H (1011_0001B)

Instruction, Operands Word 0 Word 1 Word 2
PUSHF 0002H
UM018807-0208 PUSHF Instruction

ZNEO® CPU Core
User Manual

142
PUSHMHI

PUSHMLO

Definition
PUSH Multiple

Syntax
PUSHMHI mask
PUSHMLO mask

Operation (Assembly Language)

Description
Execution of the PUSHMHI or PUSHMLO instruction stores multiple 32-bit
values to the stack from the registers indicated by the 8-bit immediate mask operand.
In assembly language, each bit in the mask represents an ALU register in the range R8–
R15 or R0–R7, respectively, for PUSHMHI or PUSHMLO. Values are pushed from regis-
ters in reverse-numerical order.

In object code, the PUSHMHI/LO operand mask bit positions are reversed from those of
POPMHI/LO. The ZNEO CPU assembler reverses the PUSHM mask in object code so the
same mask operand can be used in assembly language for both PUSHM and POPM. The
ZNEO CPU assembler allows mask bits for this instruction to be
enumerated in a list delimited by angle brackets. The list can be in any order.

For example, the following statements push the values of R13, R7, R6, R5, and R0 in
reverse-numerical order:

 PUSHMHI <R13>
 PUSHMLO <R5-R7, R0>

The assembler also implements a combined PUSHM mnemonic that generates appropriate
PUSHMHI and PUSHMLO opcodes based on a single assembly language statement.

PUSHMHI:
for n=15 to 8

if mask[n–8]=1
 SP ← SP – 4
 (SP) ← Rn

endif
endfor

PUSHMLO:
for n=7 to 0

if mask[n]=1
 SP ← SP – 4
 (SP) ← Rn

endif
endfor
PUSHMHI Instruction UM018807-0208

ZNEO® CPU Core
User Manual

143
For example, the following statement produces the same object code as the previous two-
line example:

 PUSHM <R5-R7, R0, R13>

The assembler also accepts statements using the combined PUSHM mnemonic with an
immediate mask operand.

Flags
Flags are not affected by this instruction.

Syntax and Opcodes

Example

• Before: SP=FFFF_DB38H,
 R13=000D_4321,
 R7=0007_DEF0,
 R6=0006_9ABC,
 R5=0005_5678,
 R0=0000_1234

 PUSHM <R0, R5-R7, R13> ;Object Code: 0504 0487

• After: SP=FFFF_DB22H,
 FFFF_DB34H=000D_4321,
 FFFF_DB2EH=0007_DEF0,
 FFFF_DB2AH=0006_9ABC,
 FFFF_DB26H=0005_5678,
 FFFF_DB22H=0000_1234

• The following syntax produces the same object code as the previous example:

 PUSHM #20E1H ;Object Code: 0504 0487

Instruction, Operands Word 0 Word 1 Word 2
PUSHMLO mask {04H, imm8}
PUSHMHI mask {05H, imm8}
UM018807-0208 PUSHMLO Instruction

ZNEO® CPU Core
User Manual

144
RET

Definition
Return

Syntax
RET

Operation
PC ← (SP)
SP ← SP + 4

Description
This instruction returns from a procedure entered by a CALL instruction. The contents of
the location addressed by the Stack Pointer are loaded into the Program Counter. The next
statement executed is the one addressed by the new contents of the Program Counter. The
Stack Pointer also increments by four.

Any Push or other instructions in the subroutine that decrements the stack pointer must
be followed by matching Pop or increment instructions to ensure the Stack Pointer is at
the correct location when RET is executed. Otherwise, the wrong address loads into the
Program Counter and the program cannot operate properly.

Flags
Flags are not affected by this instruction.

Syntax and Opcodes

Example
 Before: PC=0035_292EH, SP=FFFF_DB1EH,

FFFF_DB1CH=0000_0454H
 RET ;Object Code: FFFC

After: PC=0000_0454H,
SP=FFFF_DB22H

Instruction, Operands Word 0 Word 1 Word 2
RET FFFCH

Caution:
RET Instruction UM018807-0208

ZNEO® CPU Core
User Manual

145
RL

Definition
Rotate Left

Syntax
RL dst, src

Operation

Description
The destination operand contents rotate to the left by the number of bit positions
(0–31) specified in bits [4:0] of the source operand. On each bit rotate iteration, the value
of Bit 31 is moved to Bit 0 and also into the Carry (C) flag. The source register value is not
changed.

Flags

Flags are set based on the 32-bit destination register value.

7 6 5 4 3 2 1 0

C Z S V B CIRQE IRQE
* * * * 0 - - -

C Set to 1 if the last bit shifted out is 1. Otherwise 0.
Z Set to 1 if the result is zero. Otherwise 0.
S Set to 1 if the result msb is 1. Otherwise 0.
V Set to 1 if the Carry and Sign flags are different. Otherwise 0.
B Cleared to 0.
CIRQE No change.
IRQE No change.

dst
C

× src

31 0

Note:
UM018807-0208 RL Instruction

ZNEO® CPU Core
User Manual

146
Syntax and Opcodes

Example
 Before: R7=7F37_B2D3H (0111_1111_0011_0111_1011_0010_1101_0011B)
 RL R7, #4 ;Object code: BE47

After: R7=F37B_2D37H (1111_0011_0111_1011_0010_1101_0011_0111B),
Flags C, S=1; Z, V, B=0

Instruction, Operands Word 0 Word 1 Word 2
RL Rd, #uimm5 {BH, 111B, uimm5, Rd}
RL Rd, Rs {B7H, Rs, Rd}
RL Instruction UM018807-0208

ZNEO® CPU Core
User Manual

147
SBC

Definition
Subtract with Carry

Syntax
SBC dst, src

Operation
dst ← dst – src – C

Description
This instruction subtracts the source operand and the Carry (C) flag from the
destination. The result is stored in the destination address or register. The contents
of the source operand are unaffected. The ZNEO CPU performs subtraction by adding the
two’s-complement of the source operand to the destination operand. This instruction is
used in multiple-precision arithmetic to include the carry (borrow) from the subtraction of
low-order operands into the subtraction of high-order operands.

The Zero flag is set only if the initial state of the Zero flag is 1 and the result is 0.

This instruction is generated by using the Extend prefix, 0007H, with the SUB opcodes.

Flags

Flags are set based on the memory destination size, or 32 bits for register
destinations.

7 6 5 4 3 2 1 0

C Z S V B CIRQE IRQE
* * * * * - - -

C Set to 1 if the result generated a borrow. Otherwise 0.
Z Set to 1 if Z is initially 1 and the result is zero. Otherwise 0.
S Set to 1 if the result msb is 1. Otherwise 0.
V Set to 1 if an arithmetic overflow occurs. Otherwise 0.
B Set to 1 if the initial destination or source value was 0. Otherwise 0.
CIRQE No change.
IRQE No change.

Note:
UM018807-0208 SBC Instruction

ZNEO® CPU Core
User Manual

148
Syntax and Opcodes

Instruction, Operands
Extend
Prefix Word 0 Word 1 Word 2

SBC Rd, #imm32 0007H {AA9H, Rd} imm[31:16] imm[15:0]
SBC Rd, #uimm16 0007H {AA1H, Rd} uimm16
SBC Rd, Rs 0007H {A1H, Rs, Rd}
SBC Rd, addr16 0007H {714H, Rd} addr16
SBC Rd, addr32 0007H {71CH, Rd} addr[31:16] addr[15:0]
SBC Rd, soff13(Rs) 0007H {79H, Rs, Rd} {100B, soff13}
SBC addr16, Rs 0007H {717H, Rs} addr16
SBC addr32, Rs 0007H {71FH, Rs} addr[31:16] addr[15:0]
SBC (Rd), #imm32 0007H {AB9H, Rd} imm[31:16] imm[15:0]
SBC (Rd), #simm16 0007H {AD1H, Rd} simm16
SBC soff13(Rd), Rs 0007H {79H, Rs, Rd} {111B, soff13}
SBC.W addr16, Rs 0007H {716H, Rs} addr16
SBC.W addr32, Rs 0007H {71EH, Rs} addr[31:16] addr[15:0]
SBC.W (Rd), #imm16 0007H {AB1H, Rd} imm16
SBC.W soff13(Rd), Rs 0007H {79H, Rs, Rd} {110B, soff13}
SBC.SW Rd, addr16 0007H {713H, Rd} addr16
SBC.SW Rd, addr32 0007H {71BH, Rd} addr[31:16] addr[15:0]
SBC.SW Rd, soff13(Rs) 0007H {79H, Rs, Rd} {011B, soff13}
SBC.UW Rd, addr16 0007H {712H, Rd} addr16
SBC.UW Rd, addr32 0007H {71AH, Rd} addr[31:16] addr[15:0]
SBC.UW Rd, soff13(Rs) 0007H {79H, Rs, Rd} {010B, soff13}
SBC.B addr16, Rs 0007H {715H, Rs} addr16
SBC.B addr32, Rs 0007H {71DH, Rs} addr[31:16] addr[15:0]
SBC.B (Rd), #imm8 0007H {AD9H, Rd} {xH, x001B,

imm8}
SBC.B soff13(Rd), Rs 0007H {79H, Rs, Rd} {101B, soff13}
SBC.SB Rd, addr16 0007H {711H, Rd} addr16
SBC.SB Rd, addr32 0007H {719H, Rd} addr[31:16] addr[15:0]
SBC.SB Rd, soff13(Rs) 0007H {79H, Rs, Rd} {001B, soff13}
SBC.UB Rd, addr16 0007H {710H, Rd} addr16
SBC.UB Rd, addr32 0007H {718H, Rd} addr[31:16] addr[15:0]
SBC.UB Rd, soff13(Rs) 0007H {79H, Rs, Rd} {000B, soff13}
SBC Instruction UM018807-0208

ZNEO® CPU Core
User Manual

149
Examples

• Before: R3=16H, R11=20H, C=0

 SBC R3, R11 ;Object code: 0007 A1B3

After: R3=FFFF_FFF6H, Flags C, S=1; Z, V, B=0

• Before: R3=16H, R11=20H, C=1

 SBC R3, R11 ;Object code: 0007 A1B3

After: R3=FFFF_FFF5H, Flags C, S=1; Z, V, B=0
UM018807-0208 SBC Instruction

ZNEO® CPU Core
User Manual

150
SDIV

Definition
Signed Divide

Syntax
SDIV dst, src

Operation
src ← Remainder (dst/src)
dst ← Integer Part (dst/src)

Description
This instruction performs signed binary divide operation with a 32-bit dividend and 32-bit
divisor. The 32-bit integer part is stored in the destination register. The 32-bit remainder is
stored in the source register with the same sign as the dividend.

There are 3 possible outcomes of the SDIV instruction, depending upon the divisor and
the resulting quotient:

Case 1: If the integer part is in the range –2,147,483,648 to +2,147,483,647, then the quotient
and remainder are written to the destination and source registers, respectively. Flags are
set according to the result of the operation.

Case 2: If the divisor is zero, the destination, source, and flags registers are unchanged,
and a Divide-by-Zero system exception is executed.

Case 3: If the initial destination value is –2,147,483,648 (8000_0000H) and the initial source
value is –1 (FFFF_FFFFH), the unsigned value 2,147,483,648 (8000_0000H) is written to
the destination register, the source register is cleared, and the Sign and Overflow flags are
set to 1. In this case the Sign flag is incorrect, but the result can be used as an unsigned
value. A Divide Overflow exception is not executed.
SDIV Instruction UM018807-0208

ZNEO® CPU Core
User Manual

151
Flags

Syntax and Opcodes

Example
 Before: R4=FFFF_FFE5H (–27), R5=0000_0005H

 SDIV R4, R5 ;Object code AF54

After: R4=FFFF_FFF6H (–5), R5=FFFF_FFFEH, Flags S=1; Z, V, B=0

7 6 5 4 3 2 1 0

C Z S V B CIRQE IRQE
- * * * 0 - - -

C No change.
Z Set to 1 if bits [31:0] of the integer part are zero. Otherwise 0.
S Set to 1 if bit [31] of the integer part is 1. Otherwise 0.
V Set if an overflow causes the Sign flag to be incorrect. The result can still be

used as an unsigned value.
B Cleared to 0.
CIRQE No change
IRQE No change.

Instruction, Operands Word 0 Word 1 Word 2
SDIV Rd, Rs {AFH, Rs, Rd}
UM018807-0208 SDIV Instruction

ZNEO® CPU Core
User Manual

152
SLL

Definition
Shift Left Logical

Syntax
SLL dst, src

Operation

Description
The destination operand contents shift left logical by the number of bit positions (0–31)
specified in bits [4:0] of the source operand. On each bit shift iteration, the value of the
most significant bit moves into the Carry (C) flag, and Bit 0 clears to 0. The source register
value is not changed.

Flags

Flags are set based on the 32-bit destination register value.

7 6 5 4 3 2 1 0

C Z S V B CIRQE IRQE
* * * * 0 - - -

C Set to 1 if the last bit shifted out is 1. Otherwise 0.
Z Set to 1 if the result is zero. Otherwise 0.
S Set to 1 if the result msb is 1. Otherwise 0.
V Set to 1 if the Carry and Sign flags are different. Otherwise 0.
B Cleared to 0.
CIRQE No change.
IRQE No change.

C 0× src
dst31 0

Note:
SLL Instruction UM018807-0208

ZNEO® CPU Core
User Manual

153
Syntax and Opcodes

Example
 Before: R7=7F37_B2D3H (0111_1111_0011_0111_1011_0010_1101_0011B)
 SLL R7, #4 ;Object code: BC47

After: R7=F37B_2D30H (1111_0011_0111_1011_0010_1101_0011_0000B),
Flags C, S=1; Z, V, B=0

Instruction, Operands Word 0 Word 1 Word 2
SLL Rd, #uimm5 {BH, 110B, uimm5, Rd}
SLL Rd, Rs {B6H, Rs, Rd}
UM018807-0208 SLL Instruction

ZNEO® CPU Core
User Manual

154
SLLX

Definition
Shift Left Logical, Extended

Syntax
SLLX dst, src

Operation

Description
The destination operand contents shift left logical by the number of bit positions
(0–31) specified in bits [4:0] of the source operand. On each bit shift iteration, the value of
the most significant bit moves into the Carry (C) flag, and Bit 0 clears to 0.

The source register is cleared, and bits shifted out of the destination are shifted into the
source register. This instruction is generated by using the Extend prefix, 0007H, with the
SLL opcode.

Flags

Flags are set based on the 32-bit destination register value.

7 6 5 4 3 2 1 0

C Z S V B CIRQE IRQE
* * * * 0 - - -

C Set to 1 if the last bit shifted out of the destination register is 1.
Otherwise 0.

Z Set to 1 if the 32-bit destination register contains zero. Otherwise 0.
S Set to 1 if bit [31] of the destination register is 1. Otherwise 0.
V Set to 1 if the Carry and Sign flags are different. Otherwise 0.
B Cleared to 0.
CIRQE No change.
IRQE No change.

C 0× src
dst31 0

src31 0

Note:
SLLX Instruction UM018807-0208

ZNEO® CPU Core
User Manual

155
Syntax and Opcodes

Example
 Before: R7=7F37_B2D3H (0111_1111_0011_0111_1011_0010_1101_0011B),

R8=4
 SLLX R7, R8 ;Object code: 0007 B687

 After: R7=F37B_2D30H (1111_0011_0111_1011_0010_1101_0011_0000B),
 R8=0000_0007H (0000_0000_0000_0000_0000_0000_0000_0111B),
 Flags C, S=1; Z, V, B=0

Instruction, Operands
Extend
Prefix Word 0 Word 1 Word 2

SLLX Rd, Rs 0007H {B6H, Rs, Rd}
UM018807-0208 SLLX Instruction

ZNEO® CPU Core
User Manual

156
SMUL

Definition
Signed Multiply

Syntax
SMUL dst, src

Operation
dst ← (dst × src)[31:0]

src ← (dst × src)[63:32]

Description
This instruction performs a multiplication of two signed 32-bit values with a signed 64-bit
result. Result bits [31:0] are written to the destination register. Result bits [63:32] are
written to the source register.

Flags

Syntax and Opcodes

7 6 5 4 3 2 1 0

C Z S V B CIRQE IRQE
- * * 0 0 - - -

C No change.
Z Set to 1 if bits [63:0] of the result are zero. Otherwise 0.
S Set to 1 if bit [63] of the result is 1. Otherwise 0.
V Cleared to 0.
B Cleared to 0.
CIRQE No change.
IRQE No change.

Instruction, Operands Word 0 Word 1 Word 2
SMUL Rd, Rs {B1H, Rs, Rd}
SMUL Instruction UM018807-0208

ZNEO® CPU Core
User Manual

157
Example
 Before: R4=FFFF_FFE5H (–27), R5=0000_0005H
 SMUL R4, R5 ;Object code B154

After: R4=FFFF_FF79H (–135), R5=FFFF_FFFFH, Flags S=1; Z, V, B=0
UM018807-0208 SMUL Instruction

ZNEO® CPU Core
User Manual

158
SRA

Definition
Shift Right Arithmetic

Syntax
SRA dst, src

Operation

Description
This instruction performs an arithmetic shift to the right on the destination operand by the
number of bit positions (0–31) specified in bits [4:0] of the source operand. On each bit
shift iteration, Bit 0 replaces the Carry (C) flag. The value of Bit 31 (the Sign bit) does not
change, but its value shifts into Bit 30 on each iteration. The source
register value is not changed.

Flags

Flags are set based on the 32-bit destination register value.

7 6 5 4 3 2 1 0

C Z S V B CIRQE IRQE
* * * * 0 - - -

C Set to 1 if the last bit shifted out is 1. Otherwise 0.
Z Set to 1 if the result is zero. Otherwise 0.
S Set to 1 if the result msb is 1. Otherwise 0.
V Set to 1 if the Carry and Sign flags are different. Otherwise 0.
B Cleared to 0.
CIRQE No change.
IRQE No change.

C

× src

dst31 030

Note:
SRA Instruction UM018807-0208

ZNEO® CPU Core
User Manual

159
Syntax and Opcodes

Examples

• Before: R7=7F37_B2D3H (0111_1111_0011_0111_1011_0010_1101_0011B)

 SRA R7, #4 ;Object code: B847

After: R7=07F3_7B2DH (0000_0111_1111_0011_0111_1011_0010_1101B),
Flags C, Z, S, V, B=0

• Before: R7=8F37_B2D3H (1000_1111_0011_0111_1011_0010_1101_0011B)

 SRA R7, #4 ;Object code: B847

After: R7=F8F3_7B2DH (1111_1000_1111_0011_0111_1011_0010_1101B),
Flags S, V=1; C, Z, B=0

Instruction, Operands Word 0 Word 1 Word 2
SRA Rd, #uimm5 {BH, 100B, uimm5, Rd}
SRA Rd, Rs {B4H, Rs, Rd}
UM018807-0208 SRA Instruction

ZNEO® CPU Core
User Manual

160
SRAX

Definition
Shift Right Arithmetic, Extended

Syntax
SRAX dst, src

Operation

Description
This instruction performs an arithmetic shift to the right on the destination operand by the
number of bit positions (0–31) specified in bits [4:0] of the source operand. On each bit
shift iteration, Bit 0 replaces the Carry (C) flag. The value of Bit 31 (the Sign bit) does not
change, but its value shifts into Bit 30 on each iteration.

The source register is cleared, and bits shifted out of the destination are shifted into the
source register.

This instruction is generated by using the Extend prefix, 0007H, with the SRA opcode.

C

× src

dst31 030

src31 0
SRAX Instruction UM018807-0208

ZNEO® CPU Core
User Manual

161
Flags

Flags are set based on the 32-bit destination register value.

Syntax and Opcodes

Example
 Before: R7=8F37_B2D3H (1000_1111_0011_0111_1011_0010_1101_0011B),

R8=4
 SRAX R7, R8 ;Object code: 0007 B487

After: R7=F8F3_7B2DH (1111_1000_1111_0011_0111_1011_0010_1101B),
R8=3000_0000H (0011_0000_0000_0000_0000_0000_0000_0000B),
Flags S, V=1; C, Z, B=0

7 6 5 4 3 2 1 0

C Z S V B CIRQE IRQE
* * * * 0 - - -

C Set to 1 if the last bit shifted out of the destination register is 1. Otherwise 0.
Z Set to 1 if the 32-bit destination register contains zero. Otherwise 0.
S Set to 1 if bit [31] of the destination register is 1. Otherwise 0.
V Set to 1 if the Carry and Sign flags are different. Otherwise 0.
B Cleared to 0.
CIRQE No change.
IRQE No change.

Instruction, Operands
Extend
Prefix Word 0 Word 1 Word 2

SRAX Rd, Rs 0007H {B4H, Rs, Rd}

Note:
UM018807-0208 SRAX Instruction

ZNEO® CPU Core
User Manual

162
SRL

Definition
Shift Right Logical

Syntax
SRL dst, src

Operation

Description
The destination operand contents shift right logical by the number of bit positions (0–31)
specified in bits [4:0] of the source operand. On each bit shift iteration, the value of Bit 0
moves into the Carry (C) flag, and Bit 31 clears to 0. The source register value is not
changed.

Flags

Flags are set based on the 32-bit destination register value.

7 6 5 4 3 2 1 0

C Z S V B CIRQE IRQE
* * * * 0 - - -

C Set to 1 if the last bit shifted out is 1. Otherwise 0.
Z Set to 1 if the result is zero. Otherwise 0.
S Set to 1 if the result msb is 1. Otherwise 0.
V Set to 1 if the Carry and Sign flags are different. Otherwise 0.
B Cleared to 0.
CIRQE No change.
IRQE No change.

C0 × src
dst31 0

Note:
SRL Instruction UM018807-0208

ZNEO® CPU Core
User Manual

163
Syntax and Opcodes

Example
 Before: R7=8F37_B2D3H (1000_1111_0011_0111_1011_0010_1101_0011B)

 SRL R7, #4 ;Object code: BA47

After: R7=08F3_7B2DH (0000_1000_1111_0011_0111_1011_0010_1101B),
Flags C, Z, S, V, B=0

Instruction, Operands Word 0 Word 1 Word 2
SRL Rd, #uimm5 {BH, 101B, uimm5, Rd}
SRL Rd, Rs {B5H, Rs, Rd}
UM018807-0208 SRL Instruction

ZNEO® CPU Core
User Manual

164
SRLX

Definition
Shift Right Logical, Extended

Syntax
SRLX dst, src

Operation

Description
The destination operand contents shift right logical by the number of bit positions (0–31)
specified in bits [4:0] of the source operand. On each bit shift iteration, the value of Bit 0
moves into the Carry (C) flag, and Bit 31 clears to 0.

The source register is cleared, and bits shifted out of the destination are shifted into the
source register.

This instruction is generated by using the Extend prefix, 0007H, with the SRL opcode.

Flags

Flags are set based on the 32-bit destination register value.

7 6 5 4 3 2 1 0

C Z S V B CIRQE IRQE
* * * * 0 - - -

C Set to 1 if the last bit shifted out of the destination register is 1. Otherwise 0.
Z Set to 1 if the 32-bit destination register contains zero. Otherwise 0.
S Set to 1 if bit [31] of the destination register is 1. Otherwise 0.
V Set to 1 if the Carry and Sign flags are different. Otherwise 0.
B Cleared to 0.
CIRQE No change.
IRQE No change.

C0 × src
dst31 0

src31 0

Note:
SRLX Instruction UM018807-0208

ZNEO® CPU Core
User Manual

165
Syntax and Opcodes

Example
 Before: R7=8F37_B2D3H (1000_1111_0011_0111_1011_0010_1101_0011B),

R8=4
 SRLX R7, R8 ;Object code: 0007 B587

After: R7=08F3_7B2DH (0000_1000_1111_0011_0111_1011_0010_1101B),
R8=3000_0000H (0011_0000_0000_0000_0000_0000_0000_0000B),
Flags C, Z, S, V, B=0

Instruction, Operands
Extend
Prefix Word 0 Word 1 Word 2

SRLX Rd, Rs 0007H {B5H, Rs, Rd}
UM018807-0208 SRLX Instruction

ZNEO® CPU Core
User Manual

166
STOP

Definition
STOP Mode

Syntax
STOP

Operation
Stop Mode

Description
This instruction puts the ZNEO CPU in Stop mode.

Refer to the device-specific Product Specification for details of Stop mode operation.

Flags
Flags are not affected by this instruction.

Syntax and Opcodes

Instruction, Operands Word 0 Word 1 Word 2
STOP FFF8H

Note:
STOP Instruction UM018807-0208

ZNEO® CPU Core
User Manual

167
SUB

Definition
Subtract

Syntax
SUB dst, src

Operation
dst ← dst – src

Description
This instruction subtracts the source operand from the destination operand. The result is
stored in the destination address or register. The contents of the source operand are unaf-
fected. The ZNEO CPU performs subtraction by adding the two’s complement of the
source operand to the destination operand.

Flags

Flags are set based on the memory destination size, or 32 bits for register
destinations.

Syntax and Opcodes

7 6 5 4 3 2 1 0

C Z S V B CIRQE IRQE
* * * * * - - -

C Set to 1 if the result generated a borrow. Otherwise 0.
Z Set to 1 if the result is zero. Otherwise 0.
S Set to 1 if the result msb is 1. Otherwise 0.
V Set to 1 if an arithmetic overflow occurs. Otherwise 0.
B Set to 1 if the initial destination or source value was 0. Otherwise 0.
CIRQE No change.
IRQE No change.

Instruction, Operands Word 0 Word 1 Word 2
SUB Rd, #imm32 {AA9H, Rd} imm[31:16] imm[15:0]
SUB Rd, #uimm161 {AA1H, Rd} uimm16
SUB Rd, Rs {A1H, Rs, Rd}

Note:
UM018807-0208 SUB Instruction

ZNEO® CPU Core
User Manual

168
SUB Rd, addr16 {714H, Rd} addr16
SUB Rd, addr32 {71CH, Rd} addr[31:16] addr[15:0]
SUB Rd, soff13(Rs) {79H, Rs, Rd} {100B, soff13}
SUB addr16, Rs {717H, Rs} addr16
SUB addr32, Rs {71FH, Rs} addr[31:16] addr[15:0]
SUB (Rd), #imm32 {AB9H, Rd} imm[31:16] imm[15:0]
SUB (Rd), #simm16 {AD1H, Rd} simm16
SUB soff13(Rd), Rs {79H, Rs, Rd} {111B, soff13}
SUB.W addr16, Rs {716H, Rs} addr16
SUB.W addr32, Rs {71EH, Rs} addr[31:16] addr[15:0]
SUB.W (Rd), #imm16 {AB1H, Rd} imm16
SUB.W soff13(Rd), Rs {79H, Rs, Rd} {110B, soff13}
SUB.SW Rd, addr16 {713H, Rd} addr16
SUB.SW Rd, addr32 {71BH, Rd} addr[31:16] addr[15:0]
SUB.SW Rd, soff13(Rs) {79H, Rs, Rd} {011B, soff13}
SUB.UW Rd, addr16 {712H, Rd} addr16
SUB.UW Rd, addr32 {71AH, Rd} addr[31:16] addr[15:0]
SUB.UW Rd, soff13(Rs) {79H, Rs, Rd} {010B, soff13}
SUB.B addr16, Rs {715H, Rs} addr16
SUB.B addr32, Rs {71DH, Rs} addr[31:16] addr[15:0]
SUB.B (Rd), #imm8 {AD9H, Rd} {xH, x001B, imm8}
SUB.B soff13(Rd), Rs {79H, Rs, Rd} {101B, soff13}
SUB.SB Rd, addr16 {711H, Rd} addr16
SUB.SB Rd, addr32 {719H, Rd} addr[31:16] addr[15:0]
SUB.SB Rd, soff13(Rs) {79H, Rs, Rd} {001B, soff13}
SUB.UB Rd, addr16 {710H, Rd} addr16
SUB.UB Rd, addr32 {718H, Rd} addr[31:16] addr[15:0]
SUB.UB Rd, soff13(Rs) {79H, Rs, Rd} {000B, soff13}
1The one-word instruction ADD Rd, #–simm8 can be used for 8-bit immediate-to-register
subtraction if ADD Flags behavior is acceptable.

Instruction, Operands Word 0 Word 1 Word 2
SUB Instruction UM018807-0208

ZNEO® CPU Core
User Manual

169
Examples

• Before: R3=16H, R11=20H

 SUB R3, R11 ;Object code: A1B3

After: R3=FFFF_FFF6H, Flags C, S=1; Z, V, B=0

• Before: R3=FFFF_B0D4H, FFFF_B0D4H=800FH

 SUB.W (R3), #FFFFH ;Object Code: AB13 FFFF

After: FFFF_B0D4H=8010H, Flags C, S=1; Z, V, B=0

• Before: R3=FFFF_B0D4H, FFFF_B0D4H=800FH

 SUB.W (R3), #800FH ;Object Code: AB13 800F

After: FFFF_B0D4H=0000H, Flags Z=1; C, S, V, B=0

• Before: R12=16H, R10=FFFF_B020H, FFFF_B020H=91H

 SUB.UB R12, (R10) ;Object Code: 79AC 0000

After: R12=FFFF_FF85H, Flags C, Z, S, V, B = 0

• Before: R12=16H, R10=FFFF_B020H, FFFF_B020H=91H

 SUB.SB R12, (R10) ;Object Code: 79AC 2000

After: R12=0000_0085H, Flags S=1; C, Z, V, B = 0

• Before: FFFF_B034H=2EH, R12=1BH

 SUB.B B034H:RAM, R12 ;Object Code: 715C B034

After: FFFF_B034H = 13H, Flags C, Z, S, V, B =0
UM018807-0208 SUB Instruction

ZNEO® CPU Core
User Manual

170
TCM

Definition
Test Complement Under Mask

Syntax
TCM dst, src

Operation
~dst AND src

Description
This instruction tests selected bits in the destination operand for a logical 1 value. Specify
the bits to be tested by setting a 1 bit in the corresponding bit position in the source oper-
and (the mask). The TCM instruction complements the value from the destination operand
and ANDs it with the source value (mask). Check the Zero flag to determine the result. If
the Z flag is set, all of the tested bits are 1. TCM does not alter the contents of the destina-
tion or source.

Flags

Flags are set based on the memory destination size, or 32 bits for register
destinations.

7 6 5 4 3 2 1 0

C Z S V B CIRQE IRQE
- * * 0 * - - -

C No change.
Z Set to 1 if the result is zero. Otherwise 0.
S Set to 1 if the result msb is 1. Otherwise 0.
V Cleared to 0.
B Set to 1 if the initial destination or source value was 0. Otherwise 0.
CIRQE No change.
IRQE No change.

Note:
TCM Instruction UM018807-0208

ZNEO® CPU Core
User Manual

171
Syntax and Opcodes

Instruction, Operands Word 0 Word 1 Word 2
TCM Rd, #imm32 {AAFH, Rd} imm[31:16] imm[15:0]
TCM Rd, #uimm16 {AA7H, Rd} uimm16
TCM Rd, Rs {A7H, Rs, Rd}
TCM Rd, addr16 {774H, Rd} addr16
TCM Rd, addr32 {77CH, Rd} addr[31:16] addr[15:0]
TCM Rd, soff13(Rs) {7FH, Rs, Rd} {100B, soff13}
TCM addr16, Rs {777H, Rs} addr16
TCM addr32, Rs {77FH, Rs} addr[31:16] addr[15:0]
TCM (Rd), #imm32 {ABFH, Rd} imm[31:16] imm[15:0]
TCM (Rd), #simm16 {AD7H, Rd} simm16
TCM soff13(Rd), Rs {7FH, Rs, Rd} {111B, soff13}
TCM.W addr16, Rs {776H, Rs} addr16
TCM.W addr32, Rs {77EH, Rs} addr[31:16] addr[15:0]
TCM.W (Rd), #imm16 {AB7H, Rd} imm16
TCM.W soff13(Rd), Rs {7FH, Rs, Rd} {110B, soff13}
TCM.SW Rd, addr16 {773H, Rd} addr16
TCM.SW Rd, addr32 {77BH, Rd} addr[31:16] addr[15:0]
TCM.SW Rd, soff13(Rs) {7FH, Rs, Rd} {011B, soff13}
TCM.UW Rd, addr16 {772H, Rd} addr16
TCM.UW Rd, addr32 {77AH, Rd} addr[31:16] addr[15:0]
TCM.UW Rd, soff13(Rs) {7FH, Rs, Rd} {010B, soff13}
TCM.B addr16, Rs {775H, Rs} addr16
TCM.B addr32, Rs {77DH, Rs} addr[31:16] addr[15:0]
TCM.B (Rd), #imm8 {AD9H, Rd} {xH, x111B, imm8}
TCM.B soff13(Rd), Rs {7FH, Rs, Rd} {101B, soff13}
TCM.SB Rd, addr16 {771H, Rd} addr16
TCM.SB Rd, addr32 {779H, Rd} addr[31:16] addr[15:0]
TCM.SB Rd, soff13(Rs) {7FH, Rs, Rd} {001B, soff13}
TCM.UB Rd, addr16 {770H, Rd} addr16
TCM.UB Rd, addr32 {778H, Rd} addr[31:16] addr[15:0]
TCM.UB Rd, soff13(Rs) {7FH, Rs, Rd} {000B, soff13}
UM018807-0208 TCM Instruction

ZNEO® CPU Core
User Manual

172
Examples

• Before: R1[7:0]=38H (0011_1000B),
 R14[31:8]=0000_00H, R14[7:0]=08H (0000_1000B)

 TCM R1, R14 ;Object Code: A7E1

After: Flags Z=1; V, S, B=0; R1 bit 3 tests as a 1.

• Before: R4[31:8]=0000_00H, R4[7:0]=79H (0111_1001B),
 FFFF_B07BH=12H (0001_0010B)

 TCM.UB R4, B07BH:RAM ;Object Code: 7704 B07B

After: Flags Z, S, V, B=0; R4 bit 1 or bit 4 tests as a 0.

• Before: R13=FFFF_B07AH, FFFF_B07AH=C3F7H (1100_0011_1111_0111B)

 TCM.W (R13), #0001000000000000B;Object Code: AB7D 1000

After: Flags Z, S, V, B=0, Bit 12 of the addressed word tests as a 0.
TCM Instruction UM018807-0208

ZNEO® CPU Core
User Manual

173
TM

Definition
Test Under Mask

Syntax
TM dst, src

Operation
dst AND src

Description
This instruction tests selected bits in the destination operand for a 0 logical value. Specify
the bits to be tested by setting a 1 bit in the corresponding bit position in the source oper-
and (the mask). The TM instruction ANDs the value from the destination operand with the
source value (mask). Check the Zero flag can to determine the result. If the Z flag is set, all
of the tested bits are 0. TM does not alter the contents of the destination or source.

Flags

Flags are set based on the memory destination size, or 32 bits for register
destinations.

7 6 5 4 3 2 1 0

C Z S V B CIRQE IRQE
- * * 0 * - - -

C No change.
Z Set to 1 if the result is zero. Otherwise 0.
S Set to 1 if the result msb is 1. Otherwise 0.
V Cleared to 0.
B Set to 1 if the initial destination or source value was 0. Otherwise 0.
CIRQE No change.
IRQE No change.

Note:
UM018807-0208 TM Instruction

ZNEO® CPU Core
User Manual

174
Syntax and Opcodes

Instruction, Operands Word 0 Word 1 Word 2
TM Rd, #imm32 {AAEH, Rd} imm[31:16] imm[15:0]
TM Rd, #uimm16 {AA6H, Rd} uimm16
TM Rd, Rs {A6H, Rs, Rd}
TM Rd, addr16 {764H, Rd} addr16
TM Rd, addr32 {76CH, Rd} addr[31:16] addr[15:0]
TM Rd, soff13(Rs) {7EH, Rs, Rd} {100B, soff13}
TM addr16, Rs {767H, Rs} addr16
TM addr32, Rs {76FH, Rs} addr[31:16] addr[15:0]
TM (Rd), #imm32 {ABEH, Rd} imm[31:16] imm[15:0]
TM (Rd), #simm16 {AD6H, Rd} simm16
TM soff13(Rd), Rs {7EH, Rs, Rd} {111B, soff13}
TM.W addr16, Rs {766H, Rs} addr16
TM.W addr32, Rs {76EH, Rs} addr[31:16] addr[15:0]
TM.W (Rd), #imm16 {AB6H, Rd} imm16
TM.W soff13(Rd), Rs {7EH, Rs, Rd} {110B, soff13}
TM.SW Rd, addr16 {763H, Rd} addr16
TM.SW Rd, addr32 {76BH, Rd} addr[31:16] addr[15:0]
TM.SW Rd, soff13(Rs) {7EH, Rs, Rd} {011B, soff13}
TM.UW Rd, addr16 {762H, Rd} addr16
TM.UW Rd, addr32 {76AH, Rd} addr[31:16] addr[15:0]
TM.UW Rd, soff13(Rs) {7EH, Rs, Rd} {010B, soff13}
TM.B addr16, Rs {765H, Rs} addr16
TM.B addr32, Rs {76DH, Rs} addr[31:16] addr[15:0]
TM.B (Rd), #imm8 {AD9H, Rd} {xH, x110B, imm8}
TM.B soff13(Rd), Rs {7EH, Rs, Rd} {101B, soff13}
TM.SB Rd, addr16 {761H, Rd} addr16
TM.SB Rd, addr32 {769H, Rd} addr[31:16] addr[15:0]
TM.SB Rd, soff13(Rs) {7EH, Rs, Rd} {001B, soff13}
TM.UB Rd, addr16 {760H, Rd} addr16
TM.UB Rd, addr32 {768H, Rd} addr[31:16] addr[15:0]
TM.UB Rd, soff13(Rs) {7EH, Rs, Rd} {000B, soff13}
TM Instruction UM018807-0208

ZNEO® CPU Core
User Manual

175
Examples

• Before: R1[7:0]=38H (0011_1000B),
 R14[31:8]=0000_00H, R14[7:0]=08H (0000_1000B)

 TM R1, R14 ;Object Code: A6E1

After: Flags Z, V, S, B=0; R1 bit 3 tests as nonzero.

• Before: R4[31:8]=0000_00H, R4[7:0]=79H (0111_1001B),
 FFFF_B07BH=12H (0001_0010B)

 TM.UB R4, B07BH:RAM ;Object Code: 7604 B07B

After: Flags Z=1; V, S, B=0; R4 bit 1 or bit 4 tests as nonzero.

• Before: R13=FFFF_B07AH, FFFF_B07AH=C3F7H (1100_0011_1111_0111B)

 TM.W (R13), #0001000000000000B;Object Code: AB6D 1000

After: Flags Z=1, S, V, B=0, Bit 12 of the addressed word tests as a 0.
UM018807-0208 TM Instruction

ZNEO® CPU Core
User Manual

176
TRAP

Definition
Software Trap

Syntax
TRAP Vector

Operation
SP ← SP – 2
(SP) ← {00H, FLAGS[7:0]}
SP ← SP – 4
(SP) ← PC
PC ← (Vector)

Description
This instruction executes a software trap. The Flags and Program Counter are pushed onto
the stack. The ZNEO CPU loads the Program Counter with the value stored in the Trap
Vector quad. Execution begins from the new value in the Program Counter. Execute an
IRET instruction to return from a software trap.

There are 256 possible Trap Vector quads. The Trap Vector Quads are numbered from 0 to
255. The base addresses of the Trap Vector Quads begin at 0000_0000H and end at
0000_03FCH. The base address of the Trap Vector Quad is calculated by multiplying the
vector by 4.

Refer to the device-specific Product Specification for a list of vectors used by the CPU
and peripherals. A TRAP instruction can be used with these vectors, but the TRAP
does not set any of the exception or interrupt register bits that the corresponding
service routine is likely to inspect.

Flags
Flags are not affected by this instruction.

Syntax and Opcodes

Instruction, Operands Word 0 Word 1 Word 2
TRAP #vector8 {FEH, vector8}

Note:
TRAP Instruction UM018807-0208

ZNEO® CPU Core
User Manual

177
Example
 Before: PC=0000_044EH, SP=FFFF_DB22H,

 0000_03FCH=0000_EE00H
 TRAP #FFH ;Object Code: FEFF

After: PC=0000_EE00H, SP=FFFF_DB1CH,
FFFF_DB1CH=0000_0450H,
FFFF_DB20H=00H, FFFF_DB21H=Flags[7:0]
UM018807-0208 TRAP Instruction

ZNEO® CPU Core
User Manual

178
UDIV

Definition
Unsigned Divide

Syntax
UDIV dst, src

Operation
src ← Remainder (dst/src)
dst ← Integer Part (dst/src)

Description
This instruction performs an unsigned binary divide operation with a 32-bit dividend and
32-bit divisor. The resulting 32-bit unsigned integer part is stored in the destination regis-
ter. The 32-bit remainder is stored in the source register.

There are 2 possible outcomes of the UDIV instruction, depending upon the divisor:

Case 1: If the divisor is nonzero, then the quotient and remainder are written to the
destination and source registers, respectively. Flags are set according to the result of the
operation.

Case 2: If the divisor is zero, the destination, source, and flags registers are unchanged,
and a Divide-by-Zero system exception is executed.

Flags

7 6 5 4 3 2 1 0

C Z S V B CIRQE IRQE
- * * 0 0 - - -

C No change.
Z Set to 1 if bits [31:0] of the integer part are zero. Otherwise 0.
S Set to 1 if bit [31] of the integer part is 1. Otherwise 0.
V Cleared to 0.
B Cleared to 0.
CIRQE No change.
IRQE No change.
UDIV Instruction UM018807-0208

ZNEO® CPU Core
User Manual

179
Syntax and Opcodes

Example
 Before: R4=FFFF_FFE5H, R5=0000_0005H

 UDIV R4, R5 ;Object code AE54

 After: R4=3333_332DH, R5=0000_0004H, Flags Z, S, V, B=0

Instruction, Operands Word 0 Word 1 Word 2
UDIV Rd, Rs {AEH, Rs, Rd}
UM018807-0208 UDIV Instruction

ZNEO® CPU Core
User Manual

180
UDIV64

Definition
Unsigned 64-bit Divide

Syntax
UDIV dst, src

Operation
dst[63;32] ← Integer Part (dst/src)
dst[31:0] ← Remainder (dst/src)

Description
This instruction performs an unsigned binary divide operation with a 64-bit dividend and
32-bit divisor.

The destination operand is a 64-bit register pair, RRd, where d is 0 to 15. Register pair
RR0 comprises ALU registers {R0, R1}, pair RR1 comprises {R1, R2}, and so on up to
RR15, which comprises {R15, R0}. The first register in each pair contains the high-order
quad and the second register contains the low-order quad of the 64-bit value.

Use of register pair RR14 or RR15 conflicts with the Stack Pointer register, R15, and
is not recommended. Use of register pair RR13 or RR14 conflicts with the Frame
Pointer register, R14, if it is in use.

Before the operation, RRd should contain the 64-bit dividend and the src register Rs
should contain the 32-bit divisor.

The operation stores the result’s 32-bit unsigned integer part in the high-order quad of the
RRd register pair, and the 32-bit remainder in the low-order quad.

The source register, Rs, is not changed.

There are 3 possible outcomes of the UDIV64 instruction, depending upon the divisor and
the resulting quotient:

Case 1: If the result’s unsigned integer part is less than 4,294,967,296, then the quotient is
written to RRd[63:32] and remainder is written to RRd[31:0]. Flags are set according to
the result of the operation.

Case 2: If the divisor is zero, the destination, source, and flags registers are unchanged,
and a Divide-by-Zero system exception is executed.

Case 3: If the integer part is greater than or equal to 4,294,967,296, the destination, source,
and flags registers are unchanged, and a Divide Overflow system exception is executed.

This instruction is generated by using the Extend prefix, 0007H, with the UDIV opcode.

Note:
UDIV64 Instruction UM018807-0208

ZNEO® CPU Core
User Manual

181
Flags

Syntax and Opcodes

Example
Before: R3=0000_00FFH, R4=FFFF_FFE5H, R5=0000_0555H

 UDIV64 RR3, R5 ;Object code 0007 AE53

After: R3=3003_002F, R4=0000_054AH, Flags Z, S, V, B=0

7 6 5 4 3 2 1 0

C Z S V B CIRQE IRQE
- * * 0 0 - - -

C No change.
Z Set to 1 if bits [31:0] of the integer part are zero. Otherwise 0.
S Set to 1 if the bit [31] of the integer part is 1. Otherwise 0.
V Cleared to 0.
B Cleared to 0.
CIRQE No change.
IRQE No change.

Instruction, Operands
Extend
Prefix Word 0 Word 1 Word 2

UDIV64 RRd, Rs 0007H {AEH, Rs,
RRd}
UM018807-0208 UDIV64 Instruction

ZNEO® CPU Core
User Manual

182
UMUL

Definition
Unsigned Multiply

Syntax
UMUL dst, src

Operation
dst ← (dst × src)[31:0]

src ← (dst × src)[63:32]

Description
This instruction performs a multiplication of two unsigned 32-bit values with an unsigned
64-bit result. Result bits [31:0] are written to the destination register. Result bits [63:32]
are written to the source register.

Flags

Syntax and Opcodes

Example
Before: R4=FFFF_FFE5H, R5=0000_0005H

7 6 5 4 3 2 1 0

C Z S V B CIRQE IRQE
- * * 0 0 - - -

C No change.
Z Set to 1 if bits [63:0] of the result are zero. Otherwise 0.
S Set to 1 if bit [63] of the result is 1. Otherwise 0.
V Cleared to 0.
B Cleared to 0.
CIRQE No change.
IRQE No change.

Instruction, Operands Word 0 Word 1 Word 2
UMUL Rd, Rs {B0H, Rs, Rd}
UMUL Instruction UM018807-0208

ZNEO® CPU Core
User Manual

183
 UMUL R4, R5 ;Object code B054

After: R4=FFFF_FF79H, R5=0000_0004H, Flags Z, S, V, B=0
UM018807-0208 UMUL Instruction

ZNEO® CPU Core
User Manual

184
UNLINK

Definition
Unlink Frame Pointer

Syntax
UNLINK

Operation
SP ← R14

R14 ← (SP)

SP ← SP + 4

Description
This instruction releases variable space previously allocated on the stack by a LINK
instruction and restores the R14 register (frame pointer) to its state prior to the LINK.
For more details, see LINK on page 122.

Flags
Flags are not affected by this instruction.

Syntax and Opcodes

Instruction, Operands Word 0 Word 1 Word 2
UNLINK 0001H
UNLINK Instruction UM018807-0208

ZNEO® CPU Core
User Manual

185
WDT

Definition
Watchdog Timer Refresh

Syntax
WDT

Operation
None

Description
Enable the Watchdog Timer by executing the WDT instruction. Each subsequent
execution of the WDT instruction refreshes the timer and prevents the Watchdog Timer
from timing out. For more information on the Watchdog Timer, refer to the device-
specific Product Specification for your part.

Flags
Flags are not affected by this instruction.

Syntax and Opcodes

Examples

• Before: Watchdog Timer disabled.

 WDT ;Object code FFF7

 After: Watchdog Timer enabled.

• Before: Watchdog Timer enabled.

 WDT ;Object code FFF7

 After: Watchdog Timer still enabled. Time-out counter is reset.

Instruction, Operands Word 0 Word 1 Word 2
WDT FFF7H
UM018807-0208 WDT Instruction

ZNEO® CPU Core
User Manual

186
XOR

Definition
Logical Exclusive OR

Syntax
XOR dst, src

Operation
dst ← dst XOR src

Description
The source operand value is logically exclusive-ORed with the destination operand.
An XOR operation stores a 1 in a destination operand bit when the original destination bit
differs from the corresponding source operand bit; otherwise XOR stores a 0.
The contents of the source operand are unaffected. Table 23 summarizes the XOR
operation.

Table 23. Truth Table for XOR

dst src Result (dst)

0 0 0

1 0 1

0 1 1

1 1 0
XOR Instruction UM018807-0208

ZNEO® CPU Core
User Manual

187
Flags

Flags are set based on the memory destination size, or 32 bits for register
destinations.

7 6 5 4 3 2 1 0

C Z S V B CIRQE IRQE
- * * 0 * - - -

C No change.
Z Set to 1 if the result is zero. Otherwise 0.
S Set to 1 if the result msb is 1. Otherwise 0.
V Cleared to 0.
B Set to 1 if the initial destination or source value was 0. Otherwise 0.
CIRQE No change.
IRQE No change.

Note:
UM018807-0208 XOR Instruction

ZNEO® CPU Core
User Manual

188
Syntax and Opcodes

Instruction, Operands Word 0 Word 1 Word 2
XOR Rd, #imm32 {AACH, Rd} imm[31:16] imm[15:0]
XOR Rd, #uimm16 {AA4H, Rd} uimm16
XOR Rd, Rs {A4H, Rs, Rd}
XOR Rd, addr16 {744H, Rd} addr16
XOR Rd, addr32 {74CH, Rd} addr[31:16] addr[15:0]
XOR Rd, soff13(Rs) {7CH, Rs, Rd} {100B, soff13}
XOR addr16, Rs {747H, Rs} addr16
XOR addr32, Rs {74FH, Rs} addr[31:16] addr[15:0]
XOR (Rd), #imm32 {ABCH, Rd} imm[31:16] imm[15:0]
XOR (Rd), #simm16 {AD4H, Rd} simm16
XOR soff13(Rd), Rs {7CH, Rs, Rd} {111B, soff13}
XOR.W addr16, Rs {746H, Rs} addr16
XOR.W addr32, Rs {74EH, Rs} addr[31:16] addr[15:0]
XOR.W (Rd), #imm16 {AB4H, Rd} imm16
XOR.W soff13(Rd), Rs {7CH, Rs, Rd} {110B, soff13}
XOR.SW Rd, addr16 {743H, Rd} addr16
XOR.SW Rd, addr32 {74BH, Rd} addr[31:16] addr[15:0]
XOR.SW Rd, soff13(Rs) {7CH, Rs, Rd} {011B, soff13}
XOR.UW Rd, addr16 {742H, Rd} addr16
XOR.UW Rd, addr32 {74AH, Rd} addr[31:16] addr[15:0]
XOR.UW Rd, soff13(Rs) {7CH, Rs, Rd} {010B, soff13}
XOR.B addr16, Rs {745H, Rs} addr16
XOR.B addr32, Rs {74DH, Rs} addr[31:16] addr[15:0]
XOR.B (Rd), #imm8 {AD9H, Rd} {xH, x100B, imm8}
XOR.B soff13(Rd), Rs {7CH, Rs, Rd} {101B, soff13}
XOR.SB Rd, addr16 {741H, Rd} addr16
XOR.SB Rd, addr32 {749H, Rd} addr[31:16] addr[15:0]
XOR.SB Rd, soff13(Rs) {7CH, Rs, Rd} {001B, soff13}
XOR.UB Rd, addr16 {740H, Rd} addr16
XOR.UB Rd, addr32 {748H, Rd} addr[31:16] addr[15:0]
XOR.UB Rd, soff13(Rs) {7CH, Rs, Rd} {000B, soff13}
XOR Instruction UM018807-0208

ZNEO® CPU Core
User Manual

189
Examples

• Before: R1[7:0]=38H (0011_1000B),
R14[7:0]=8DH (1000_1101B)

 XOR R1, R14 ;Object Code: A4E1

 After: R1[7:0]=B5H (1011_0101), Flags Z, V, S, B=0

• Before: R4[31:8]=FFFF_FFH, R4[7:0]=79H (0111_1001B),
FFFF_B07BH=EAH (1110_1010B)

 XOR.SB R4, B07BH:RAM ;Object Code: 7414 B07B

 After: R4[31:8]=FFFF_FFH, R4[7:0]=93H (1001_0011B), Flags S=1; Z, V, B=0

• Before: R4[31:8]=FFFF_FFH, R4[7:0]=79H (0111_1001B),
FFFF_B07BH=EAH (1110_1010B)

 XOR.UB R4, B07BH:RAM ;Object Code: 7404 B07B

 After: R4[31:8]=0000_00H, R4[7:0]=93H (1001_0011B), Flags Z, S, V, B=0

• Before: R13=FFFF_B07AH, FFFF_B07AH=C3F7H (1100_0011_1111_0111B)

 XOR.W (R13), #80F0H ;Object Code: AB4D 80F0

 After: FFFF_B07AH=4307H (0100_0011_0000_0111B), Flags S=1; Z, V, B=0
UM018807-0208 XOR Instruction

ZNEO® CPU Core
User Manual

190
XOR Instruction UM018807-0208

ZNEO® CPU Core
User Manual

191
Index

Numerics
16-bit addressing 16, 30
32-bit addressing 29

A
abbreviations

miscellaneous 64
opcode 53
symbolic 64
syntax 64

ADC instruction 66
ADD instruction 69
addition instruction 69
addition with carry 66
address

effective 30, 33
map 16
offset 33
space 15

addressing
16-bit 30
32-bit 29
indirect 33
jump 40
memory 29
register 29

alignment
address 19
memory 20
stack 36

ALU
description 4
registers 4

AND instruction 38, 72
arbiter, bus 5
arguments, frame 37
arithmetic instruction class 23
arithmetic logic unit, ALU 4
arithmetic shift right 158, 160

assembler, meaning of 2
assembly language

example 22
introduction 21
meaning of 2

ATM instruction 76
atomic instruction 76
audience ix

B
B condition code 11
B suffix 31, 32
base address register 33
big endian data order 19
binary notation x
bit field

concatenation xi
symbols 53

bit manipulation
instruction class 24
set, clear, test 38

bit numbering xi
bit range xi
blank flag 10
block diagram, CPU 2
braces, meaning of xi
brackets, meaning of xi
BRK instruction 77
bus arbiter 5
bus widths 19
bus_time symbol 7
byte data size 32

C
C condition code 12
CALL instruction 78
call subroutine

absolute 80
instruction 78

CALLA instruction 80
carry flag 9
caution, meaning of xii
UM018807-0208 Index

ZNEO® CPU Core
User Manual

192
ceiling function 7
clear register instruction 81
clear, meaning of xi
clearing bits 38
CLR instruction 81
COM instruction 83
comment, assembly language 21
compare instruction

description 85
to zero with carry 91
with carry 88

complement instruction 83
concatenation, bits xi
condition code

blank 11
carry 12
descriptions 11
equal 12
greater than 12
greater than or equal 12
less than 11
less than or equal 11
minus 12
no carry 12
no overflow 12
non-zero 12
not blank 12
not equal 12
overflow 11
plus 12
unsigned greater than 12
unsigned greater than or equal 12
unsigned less than 12
unsigned less than or equal 11
zero 12

control
program 2
registers 8

conventions, general x
counter, program 4
courier typeface, meaning of x
CP instruction 85
CPC instruction 88
CPCZ instruction 91

CPU
block diagram 2
control instruction class 25
control register 13

CPUCTL register 12
CPZ instruction 93
cycles, execution 6
cycles, fetch 5

D
data bus width 19
data size 30, 31, 32
DEC instruction 95
decimal range 32
decoding, opcode 3
decrement

base address 35
instruction 95

delay cycle
execution 7
fetch 5

destination operand 21, 27
DI instruction 97
direct address

jump 40
memory 29

directive, assembly language 21
disable interrupts 41, 97
divide

by zero 49
overflow 49
signed 150
unsigned 178
unsigned 64-bit 180

DJNZ instruction 98
double-minus, meaning of 35

E
effective address

16-bit 30
loading 34
register indirect 33
Index UM018807-0208

ZNEO® CPU Core
User Manual

193
EI instruction 41, 100
enable interrupt 41, 100
endianness 19
EQ condition code 12
ERAM space mnemonic 19
EROM space mnemonic 17, 19
even address 19
exception

system 47
vector 47

exclusive-OR instruction 186
execution cycles 6
execution unit 2, 4
expression notation 63
EXT instruction 32, 101
extend register instruction 101
extended shift left 154
extended shift right 160, 164
extension

data 31, 32
signed 32
unsigned 32

external memory
description 18
map 16

F
features, CPU 1
fetch

cycles 5
opcode and operand 3
unit 2, 3

flags
blank 10
carry 9
IRQE 11
overflow 10
POPF instruction 135
PUSHF instruction 141
register 9
sign 10
zero 10

FP register 37

frame pointer 37

G
GE condition code 12
GT condition code 12

H
HALT instruction 103
hash mark, meaning of 28
hexadecimal values

notation x
range 32

I
I/O memory 18
ILL instruction 49, 104
illegal instruction 49, 104
immediate data

description 28
fetch 3

INC instruction 106
increment

base address 35
register 106

indirect addressing 33
instruction

classes 23
cycles 5
notation 63
set 63

internal memory 17
internal RAM

description 18
map 16

interrupt
disable 41, 97
enable 41
nesting 44
polled 45
priority 44
processing 42
UM018807-0208 Index

ZNEO® CPU Core
User Manual

194
return 43, 108
software 45
stack behavior 42
vectored 41
vectoring example 43

IODATA space mnemonic 18
IRET instruction 43, 108
IRQE flag 11

J
JP cc instruction 112
JP instruction 110
JPA instruction 111
jump

absolute 111
addressing 40
conditional 112
instruction 110

L
label, assembly language 21
LD instruction

delay cycle 7
description 113
LD cc 119

LDES instruction 120
LE condition code 11
LEA instruction

addressing 34
delay cycle 7
description 121

left rotate 145
LINK instruction

description 122
FP register use 37

load
condition code 119
delay cycle 7
effective address 34, 121
instruction class 25
sign 120
value 113

with increment or decrement 35
local variables, frame 37
logical AND instruction 38, 72
logical instruction class 24
logical OR instruction 38, 129
logical shift

left 152
left, extended 154
right 162
right, extended 164

logical XOR instruction 186
LSB, meaning xi
lsb, meaning xi
LT condition code 11

M
map, memory 16
mapping, register to memory bytes 31
mask

AND 38
OR 38
POPM 136
PUSHM 142
TCM 39
TM 39

masked logic 38
master interrupt enable flag 11
memory

alignment 20
data size 30
external 18
internal 17
map 16
non-volatile 17
RAM 18

MI condition code 12
minus, double 35
mnemonic

assembly language 21
meaning of 2

MSB, meaning xi
msb, meaning xi
MUL instruction 123
Index UM018807-0208

ZNEO® CPU Core
User Manual

195
multiple pop instruction 136
multiple push instruction 142
multiply instruction

32-bit 123
signed 156
unsigned 182

N
NB condition code 12
NC condition code 12
NE condition code 12
NEG instruction 125
negate instruction 125
nesting interrupts 44
no suffix 30
NOFLAGS instruction 127
non-volatile memory

description 17
map 16

no-operation instruction 128
NOP instruction 128
notation

expression 63
instruction 63
numerical 63
operand 54

NOV condition code 12
numeric ranges 32
numerical notation 63
NZ condition code 12

O
object code, meaning of 2
odd address 19
offset

address 33
indirect, range 33
jump 40
LEA, range 34
PC, range 35

opcode list 54
operand

addressing 27
destination 21, 27
meaning of 2
source 21, 27
symbols 54

option bits 16, 17
OR instruction 38, 129
order, bit numbers xi
OV condition code 11
overflow

divide 49
flag 10
PC 47
stack 48

P
PC register 4, 34
PCOV register 8, 47
peripheral bus width 19
pipeline

fetch 3
meaning of 5

PL condition code 12
polled interrupt 45
POP instruction

description 133
postincrement 36
stack usage 36

POPF instruction 135
POPMHI instruction 136
POPMLO instruction 136
postincrement 35
pound sign, meaning of 28
predecrement 35
priority, interrupt 44
processing, interrupt 42
processor block diagram 2
program control instruction class 26
program counter

as base address 34
description 4
loading 34
overflow 47
UM018807-0208 Index

ZNEO® CPU Core
User Manual

196
program, processor 2
pseudo-op 21
PUSH instruction

description 139
predecrement 35
stack usage 36

PUSHF instruction 141
PUSHMHI instruction 142
PUSHMLO instruction 142

Q
quad data size 32

R
RAM space 18
range

indirect offset 33
jump offset 40
LEA offset 34
numeric value 32
of bits xi
PC offset 35

reference, instruction 63
register-indirect addressing 33
registers

addressing 29
ALU 4
base address 33
control 8
CPUCTL 12
FLAGS 9
map 16
PCOV 8
SPOV 8
SYSEXCP 48

relative address, jump 40
relative jump ranges 40
reserved memory 17
RESET vector

location 4
reserved 17
with TRAP 51

reset, meaning of xi
resizing data 31
RET instruction 43, 144
return from interrupt 43, 108
RL instruction 145
ROM space mnemonic 17
rotate instruction class 24
rotate left 145

S
S suffix 32
safeguards xii
SBC instruction 147
SDIV instruction 150
semicolon, meaning of 21
set, meaning of xi
setting bits 38
shift

instruction class 24
left 152, 154
right 158, 162
right extended 160, 164

sign flag 10
signed

divide instruction 150
extension 32
multiply instruction 156
value 32

size
immediate data 28
memory data 32

SLL instruction 152
SLLX instruction 154
SMUL instruction 156
software interrupt 45
software trap 51, 176
source operand 21, 27
source, assembly language 22
SP register 36
space, address 15
SPOV register 8, 48
SRA instruction 158
SRAX instruction 160
Index UM018807-0208

ZNEO® CPU Core
User Manual

197
SRL instruction 162
SRLX instruction 164
stack

allocating space 37
interrupt effect 42
overflow 48
pointer (SP) 36

state machine 2, 4
statement, assembly language 21
STOP instruction 166
SUB instruction 167
subroutine call

absolute 80
instruction 78

subroutine link, unlink 37
subtract instruction 167
subtract with carry 147
suppressing flag changes 127
symbols

bit field 53
expression 63
instruction 63
operand 54

SYSEXCP register 48
system exceptions 47

T
TCM instruction 39, 170
test compliment under mask instruction 39, 170
test under mask instruction 39, 173
testing bits 39
time

execution 6
fetch 5

TM instruction 39, 173
TRAP instruction 51, 176
truncation, data 31
truth table

AND 72
OR 129
XOR 186

two’s complement notation 32

U
U suffix 32
UDIV instruction 178
UDIV64 instruction 180
UGE condition code 12
UGT condition code 12
ULE condition code 11
ULT condition code 12
UMUL instruction 182
unaligned access time 7
unaligned address 19
underscore, meaning of x
UNLINK instruction 184
UNLINK, and FP register 37
unsigned

divide instruction 178
divide, 64-bit 180
extension 32
multiply instruction 182

uppercase letters, meaning xi, xii
user flags 11

V
V flag 10
variables, frame 37
vector

exception 47
interrupt 41, 43
map 16, 17
RESET 4, 17, 51
trap 51

W
W suffix 31, 32
wait states, bus 7
watch-dog timer instruction 185
WDT instruction 185
width, bus 19
word data size 32
UM018807-0208 Index

ZNEO® CPU Core
User Manual

198
X
XOR instruction 186

Z
Z condition code 12
zero extension 32
zero flag 10
Index UM018807-0208

ZNEO® CPU Core
User Manual

UM018807-0208 Customer Support

199

Customer Support
For answers to technical questions about the product, documentation, or any other issues
with Zilog’s offerings, please visit Zilog’s Knowledge Base at:

http://www.zilog.com/kb.

For any comments, detail technical questions, or reporting problems, please visit Zilog’s
Technical Support at:

http://support.zilog.com.

http://www.zilog.com/kb
http://support.zilog.com

	ZNEO® CPU Core
	Revision History
	Table of Contents
	Manual Objectives
	About This Manual
	Intended Audience
	Manual Organization
	Manual Conventions
	Safeguards

	Architectural Overview
	Features
	Program Control
	Processor Block Diagram
	Fetch Unit
	Execution Unit
	Instruction Cycle Time
	Instruction Fetch Cycles
	Execution Cycles
	Control Registers
	Program Counter Overflow Register
	Stack Pointer Overflow
	Flags Register (FLAGS)
	CPU Control Register (CPUCTL)

	Address Space
	Memory Map
	Internal Non-Volatile Memory
	Internal RAM
	I/O Memory
	I/O Memory Precautions
	External Memory
	Endianness
	Bus Widths

	Assembly Language Introduction
	ZNEO CPU Instruction Classes

	Operand Addressing
	Immediate Data
	Register Addressing
	Direct Memory Addressing
	Memory Data Size
	Resizing Data
	Register-Indirect Memory Addressing
	Loading an Effective Address
	Using the Program Counter as a Base Address
	Memory Address Decrement and Increment
	Using the Stack Pointer (R15)
	Using the Frame Pointer (R14)
	Bit Manipulation
	Clearing Bits (Masked AND)
	Setting Bits (Masked OR)
	Testing Bits (TM and TCM)
	Jump Addressing

	Interrupts
	Vectored Interrupts
	Interrupt Enable and Disable
	Interrupt Processing
	Returning From a Vectored Interrupt
	Interrupt Priority and Nesting
	Software Interrupt Generation
	Polled Interrupts

	System Exceptions
	Program Counter Overflow
	Stack Overflow
	Divide-by-Zero
	Divide Overflow
	Illegal Instruction

	Software Traps
	Instruction Opcodes
	Instruction Set Reference
	Instruction Notation
	Numerical and Expression Notation
	Miscellaneous Abbreviations
	Example Description
	Mnemonic
	ADC
	ADD
	AND
	ATM
	BRK
	CALL
	CALLA
	CLR
	COM
	CP
	CPC
	CPCZ
	CPZ
	DEC
	DI
	DJNZ
	EI
	EXT
	HALT
	ILL
	INC
	IRET
	JP
	JPA
	JP cc
	LD
	LD cc
	LDES
	LEA
	LINK
	MUL
	NEG
	NOFLAGS
	NOP
	OR
	POP
	POPF
	POPMLO
	POPMHI
	PUSH
	PUSHF
	PUSHMHI
	PUSHMLO
	RET
	RL
	SBC
	SDIV
	SLL
	SLLX
	SMUL
	SRA
	SRAX
	SRL
	SRLX
	STOP
	SUB
	TCM
	TM
	TRAP
	UDIV
	UDIV64
	UMUL
	UNLINK
	WDT
	XOR

	Index
	Customer Support

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

