MATLAB AND ITS CONTROL TOOLBOX

Outline

MATLAB
MATLAB and Toolboxes
MATLAB and Control
Control System Toolbox
Simulink

MATLAB

- Aerospace and Defense
- Automotive
- Biotech, Medical, and Pharmaceutical
- Chemical and Petroleum
- Communications
- Computers and Office Equipment
- Education
- Electronics and Semiconductor
- **•** Financial Services
- Industrial Equipment and Machinery
- Instrumentation
- Utilities and Energy

The MathWorks Product Family

MATLAB and Control

Control Design Process

MATLAB and Control

Modeling Tools

MATLAB and Control

Design and Analysis

Core Features

Tools to manipulate LTI models

Classical analysis and design

- Bode, Nyquist, Nichols diagrams
- *Step and impulse response*
- *Gain/phase margins*
- Root locus design

Modern state-space techniques

- *Pole placement*
- LQG regulation

LTI Objects (Linear Time Invariant)

- 4 basic types of LTI models
 - Transfer Function (TF)
 - Zero-pole-gain model (ZPK)
 - State-Space models (SS)
 - Frequency response data model (FRD)

Conversion between models

Model properties (dynamics)

Transfer Function

$$H(s) = \frac{p_1 s^n + p_2 s^{n-1} + \dots + p_{n+1}}{q_1 s^m + q_1 s^{m-1} + \dots + q_{m+1}}$$

where

 $p_1, p_2 \dots p_{n+1}$ numerator coefficients $q_1, q_1 \dots q_{m+1}$ denominator coefficients

Control System Toolbox Transfer Function

• Consider a linear time invariant (LTI) singleinput/single-output system y''+6y'+5y = 4u'+3u

Applying Laplace Transform to both sides with zero initial conditions

$$G(s) = \frac{Y(s)}{U(s)} = \frac{4s+3}{s^2+6s+5}$$

Control System Toolbox Transfer Function

>> num = [4 3];
>> den = [1 6 5];
>> sys = tf(num,den)
Transfer function:
 4 s + 3

 $s^{2} + 6s + 5$

>> [num,den] = tfdata(sys,'v') num = 0 4 3 den = 1 6 5 Control System Toolbox Zero-pole-gain model (ZPK)

$$H(s) = K \frac{(s - p_1)(s - p_2) + \dots + (s - p_n)}{(s - q_1)(s - q_2) + \dots + (s - q_m)}$$

where

 $p_1, p_2 \dots p_{n+1}$ the zeros of H(s) $q_1, q_1 \dots q_{m+1}$ the poles of H(s)

Control System Toolbox Zero-pole-gain model (ZPK)

Consider a Linear time invariant (LTI) singleinput/single-output system

$$y'' + 6y' + 5y = 4u' + 3u$$

Applying Laplace Transform to both sides with zero initial conditions

$$G(s) = \frac{Y(s)}{U(s)} = \frac{4s+3}{s^2+6s+5} = \frac{4(s+0.75)}{(s+1)(s+5)}$$

Control System Toolbox Zero-pole-gain model (ZPK)

>> [ze,po,k] = zpkdata(sys1,'v') ze = -0.7500 po = -1 -5 k =

4

Control System Toolbox State-Space Model (SS)

x = A x + B uy = C x + D u

where

X

u and yA, B, C and D state vector input and output vectors state-space matrices Control System Toolbox **State-Space Models** Consider a Linear time invariant (LTI) singleinput/single-output system y''+6y'+5y = 4u''+3uState-space model for this system is $\begin{vmatrix} x_1' \\ x_2' \end{vmatrix} = \begin{vmatrix} 0 & 1 \\ -5 & -6 \end{vmatrix} \begin{vmatrix} x_1 \\ x_2 \end{vmatrix} + \begin{vmatrix} 0 \\ 1 \end{vmatrix} u \qquad \begin{vmatrix} x_1(0) \\ x_2(0) \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \end{vmatrix}$ $y = \begin{bmatrix} 3 & 4 \end{bmatrix} \begin{vmatrix} x_1 \\ x_2 \end{vmatrix}$

State-Space Models

>> sys = ss([0 1; -5 -6],[0;1],[3,4],0) a = x1 x2 x1 0 1 x2 -5 -6	c = x1 x2 y1 3 4
b = u1	d = u1 v1 0

x1 0 x2 1

УT

State Space Models

- rss, drss Random stable state-space models.
- **ss2ss** State coordinate transformation.
- canon State-space canonical forms.
- **ctrb** Controllability matrix.
- **obsv** Observability matrix.
- **gram** Controllability and observability gramians.
- **ssbal** Diagonal balancing of state-space realizations.
- **balreal** Gramian-based input/output balancing.
- **modred** Model state reduction.
- **minreal** Minimal realization and pole/zero cancellation.
- **sminreal** Structurally minimal realization.

Conversion between different models

Model Dynamics

- **pzmap**: Pole-zero map of LTI models.
- pole, eig System poles
- **zero** System (transmission) zeros.
- dcgain: DC gain of LTI models.
- bandwidth System bandwidth.
- iopzmap Input/Output Pole-zero map.
- damp Natural frequency and damping of system
- esort Sort continuous poles by real part.
- □ dsort Sort discrete poles by magnitude.
- covar Covariance of response to white noise.

- Impulse Response (*impulse*)
- Step Response (step)
- General Time Response (*lsim*)
- Polynomial multiplication (conv)
- Polynomial division (*deconv*)
- Partial Fraction Expansion (residue)
- gensig Generate input signal for lsim.

The impulse response of a system is its output when the *input is a unit impulse*.
The step response of a system is its output when the *input is a unit step*.
The general response of a system to any *input* can be computed using the lsim command.

Problem Given the LTI system

$$G(s) = \frac{3s+2}{2s^3+4s^2+5s+1}$$

Plot the following responses for:

- The impulse response using the impulse command.
- The step response using the step command.
- The response to the input u(t) = sin(0.5t) calculated using both the lsim commands

Frequency Domain Analysis and Design

Root locus analysis
Frequency response plots
Bode

Phase Margin
Gain Margin

Frequency Domain Analysis and Design

Root Locus

The root locus is a plot in the s-plane of all possible locations of the poles of a closed-loop system, as one parameter, usually the gain, is varied from 0 to ∞ .

 By examining that plot, the designer can make choices of values of the controller's parameters, and can infer the performance of the controlled closed-loop system.

Frequency Domain Analysis and Design

Root Locus

Plot the root locus of the following system

$$G(s) = \frac{K(s+8)}{s(s+2)(s^2+8s+32)}$$