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Abstract 

This thesis presents a framework for fundamental electrical economy concepts 

and methodology’s. The proposed setup is based on mathematical optimization 

(nonlinear programming) and the basic tools are: The Lagrangian approach for 

systems with equality constraints and the Karush Kuhn Tucker (KKT) for 

optimization with inequality constraints. The proposed design attempts to 

achieve a trade-off between minimizing the monetary cost and maximizing the 

power efficiency while meeting with the demand level. The monetary cost 

objective function consists of the plant’s hourly cost function, the power 

demanded from the load, the transmission power losses and the generators / 

tie-line power limits.  

Two numerical examples are used to show the optimization with both two and 

three different power plants. Four different cases are being used to show what 

effect the different constraints have on the demanded power and the different 

power plants. 

Case 1: Optimal Dispatching with equality constraints 

Case 2:  Optimal Dispatching with equality constraints and power 

generation limits 

Case 3:  Optimal Dispatching with equality constraints  and transmission 

losses 

Case 4:  Optimal Dispatching with equality constraints, generation limits 

and transmission losses 



 

 

 

 

Introduction 
 

What is optimization: 

A broad set of interrelated decisions on obtaining, operating, and maintaining 

physical and human resources for electricity generation, transmission, and 

distribution that minimize the total cost of providing electric power to all classes 

of consumers, subject to engineering, market, and regulatory constraints 

Power System Optimization is aimed at improvements in more areas than cost:  

• Reliability: by reducing the cost of interruptions and power quality 

disturbances and reducing the probability and consequences of 

widespread blackouts. 

• Economics: by keeping downward prices on electricity prices, reducing 

the amount paid by consumers as compared to the “business as usual” 

(BAU) grid, creating new jobs and stimulating the economy 

• Efficiency: by reducing the cost to produce, deliver, and consume 

electricity. 

• Environmental Friendliness: by reducing emissions when compared 

to BAU by enabling a larger penetration of renewables and improving 

efficiency of generation, delivery, and consumption. 

• Security:  by reducing dependence on imported energy as well as the 

probability and consequences of manmade attacks and natural disasters. 

  



 

 

 

Chapter 1: Basic economics 

1.1 Economic terminology 

1.1.1 Elasticity of demand 

Increasing the price of a commodity even by a small amount will clearly 

decrease demand. But by how much? To answer this question, we could use 

the derivative  
��

��
  of the demand curve. Using this slope directly presents the 

problem that the numerical value depends on the units that we use to measure 

the quantity and the price. Comparing the demand’s response to price changes 

for various commodities would be impossible. To get around this difficulty, we 

define the price elasticity of demand as the ratio of the relative change in 

demand to the relative change in price: 
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The demand for a commodity is said to be elastic if a given percentage change 

in price produces a larger percentage change in demand. On the other hand, if 

the relative change in demand is smaller than the relative change in price, the 

demand is said to be inelastic. Finally, if the elasticity is equal to −1, the 

demand is unit elastic. The elasticity of the demand for a commodity depends 

in large part on the availability of substitutes. For example, the elasticity of the 

demand for coffee would be much smaller if consumers did not have the option 

to drink tea. When discussing elasticities and substitutes, one has to be clear 

about the timescale for substitutions. Suppose that electric heating is 

widespread in a region. In the short run, the price elasticity of the demand for 

electricity is very low because consumers do not have a choice if they want to 

stay warm. In the long run, however, they can install gas-fired heating and the 

price elasticity of the demand for electricity will be much higher. The concept 

of substitute products can be quantified by defining the cross-elasticity 

between the demand for commodity I and the price of commodity j: 
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While the elasticity of a commodity to its own price (its self-elasticity) is always 

negative, cross-elasticities between substitute products are positive because 

an increase in the price of one will spur the demand for the other. If two 

commodities are complements, a change in the demand for one will be 

accompanied by a similar change in the demand for the other. Electricity and 

electric heaters are clearly complements. The cross-elasticities of 

complementary commodities are negative. 

1.1.2 Opportunity cost 

Opportunity cost is the utility or profits foregone by choosing one alternative 

over another. That means that consumers have the choice of how much they 

purchase from a commodity. So they can decide if the price they pay is on the 

same marginal level as the benefit they get. The producer can make different 

decisions based on what revenue he will get from selling at a specific market. 

He has the choice to sell his commodity directly to the consumer, sell it on the 

market or can stop the production. We can say that the sale of the commodity 

is less than the opportunity cost associated with the production of it. 

Our model of the consumers’ behaviour is based on the assumption that these 

consumers can choose how much of a commodity they purchase. We also 

argued that the consumption level is such that the marginal benefit that 

consumers get from this commodity is equal to the price that they have to pay 

to obtain it. A similar argument can be used to develop our model of the 

producers. Let us consider one of the apple growers who brings her products 

to the market that we visited earlier. There is a price below which she will 

decide that selling apples is not worthwhile. There are several reasons why she 

could conclude that this revenue is insufficient. First, it might be less than the 

cost of producing the apples. Second, it might be less than the revenue she 

could get by using these apples for some other purposes, such as selling them 

to a cider-making factory. Finally, she could decide that she would rather 

devote the resources needed to produce apples (money, land, machinery and 

her own time) into some other activity, such as growing pears or opening a 

bed-and-breakfast. One can summarize these possibilities by saying that the 

revenue from the sale of apples is less than the opportunity cost associated 

with the production of these apples. 



 

 

 

1.1.3 Supply and inverse supply 

While the elasticity of a commodity to 

its own price (its self-elasticity) is 

always negative, cross-elasticities 

between substitute products are 

positive because an increase in the 

price of one will spur the demand for 

the other. If two commodities are 

complements, a change in the demand 

for one will be accompanied by a 

similar change in the demand for the other. Electricity and electric heaters are 

clearly complements. The cross-elasticities of complementary commodities are 

negative. Other producers have different opportunity costs and will therefore 

decide to adjust the amount they supply at different price thresholds. If we 

aggregate the amounts supplied by a sufficiently large number of producers, 

we get a smooth, upward-sloping curve such as the one shown in adjacent 

graph this curve represents the inverse supply function for this commodity: 

� = ��
(�) 

This function indicates the value that the market price should take to make it 

worthwhile for the aggregated producers to supply a certain quantity of the 

commodity to the market. We can, of course, look at the same curve from the 

other direction and define the supply function, which gives us the quantity 

supplied as a function of the market price: 

� = �(�) 

As depicted in adjacent graph, 

goods produced by different 

producers (or by the same producer 

but using different means of 

production) are located on different 

parts of the supply curve. The 

marginal producer is the producer 

whose opportunity cost is equal to 

the market price. If this market 



 

 

 

price decreases even by a small amount, this producer would decide that it is 

not worthwhile to continue production. Extra marginal production refers to 

production that could become worthwhile if the market price were to increase. 

On the other hand, the opportunity cost of the infra-marginal producers is 

below the market price. These producers are thus able to sell at a price that is 

higher than the lowest price at which they would find it worthwhile to produce. 

 

1.1.4 Market equilibrium 

So far, we have considered producers and consumers separately. It is time to 

see how they interact in a market. In this section, we make the assumption 

that each supplier or consumer cannot affect the price by its actions. In other 

words, all market participants take the price as given. If this assumption is 

true, the market is said to be a perfectly competitive market. This assumption 

is usually not true for electricity markets. We will thus discuss in a later section 

how markets operate when some participants can influence the price through 

their actions. In a competitive market, it is the combined action of all the 

consumers on one side and of all the suppliers on the other side that 

determines the price. The equilibrium price or market clearing price 

∗ is such that the quantity that the suppliers are willing to provide is equal to 

the quantity that the consumers wish to obtain. It is thus the solution of the 

following equation: 

�(� ∗) = �(� ∗) 

This equilibrium can also be defined in terms of the inverse demand function 

and the inverse supply function. The equilibrium quantity q∗ is such that the 

price that the consumers are willing to pay for that quantity is equal to the 

price that producers must receive to supply that quantity: 

��
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The graph below illustrates these concepts. 

 

 So far, we have shown that at the market equilibrium, the behaviours of the 

consumers and the suppliers are consistent. We have not yet shown, however, 

that this point represents a stable equilibrium. To demonstrate this, let us show 

that the market will inevitably settle at that point. Suppose, as shown in Figure 

2.13, that the market price is  

, where the demand is greater than the supply. Some suppliers will inevitably 

realize that there are some unsatisfied customers to whom they could sell their 

goods at more than the going price. The traded quantity will increase and so 

will the price until the equilibrium conditions are reached. 

Similarly, if the market price is π2 > π ∗, the supply exceeds the demand and 

some suppliers are left with goods for which they cannot find buyers. To avoid 

being caught in this situation, they will reduce their production until the amount 

that producers are willing to sell is equal to the amount that consumers are 

willing to buy. 

1.1.5 Pareto efficiency 

When the market is controlled by only 1 supplier, the supplier will try to 

increase the benefit it makes from it. If the market is depends on different 

suppliers, than it is not possible to increase its benefit of 1 supplier without 

reducing the benefit of the other suppliers. This is called pareto efficiency.  

Pareto efficiency, or Pareto optimality, is a state of allocation of resources in 

which it is impossible to make any one individual better off without making at 



 

 

 

least one individual worse off. The term is named after Vilfredo Pareto (1848–

1923), an Italian engineer and economist who used the concept in his studies 

of economic efficiency and income distribution. The concept has applications in 

academic fields such as economics, engineering, and the life sciences. 

Pareto improvement is defined to be a change to a different allocation that 

makes at least one individual better off without making any other individual 

worse off, given a certain initial allocation of goods among a set of individuals. 

An allocation is defined as "Pareto efficient" or "Pareto optimal" when no further 

Pareto improvements can be made. 

Pareto efficiency is a minimal notion of efficiency and does not necessarily 

result in a socially desirable distribution of resources: it makes no statement 

about equality, or the overall well-being of a society. The notion of Pareto 

efficiency can also be applied to the selection of alternatives in engineering and 

similar fields. Each option is first assessed under multiple criteria and then a 

subset of options is identified with the property that no other option can 

categorically outperform any of its members 

If economic allocation in any system is not Pareto efficient, there is potential 

for a Pareto improvement—an increase in Pareto efficiency: through 

reallocation, improvements can be made to at least one participant's well-being 

without reducing any other participant's well-being. 

It is important to note, however, that a change from an inefficient allocation to 

an efficient one is not necessarily a Pareto improvement. Thus, in practice, 

ensuring that nobody is disadvantaged by a change aimed at achieving Pareto 

efficiency may require compensation of one or more parties. For instance, if a 

change in economic policy eliminates a monopoly and that market 

subsequently becomes competitive and efficient, the monopolist will be made 

worse off. However, the loss to the monopolist will be more than offset by the 

gain in efficiency, in the sense that the monopolist could hypothetically be 

compensated for its loss while still leaving a net gain for others in the economy, 

a Pareto improvement. 

In real-world practice, such compensations have unintended consequences. 

They can lead to incentive distortions over time as agents anticipate such 

compensations and change their actions accordingly. Under certain idealized 



 

 

 

conditions, it can be shown that a system of free markets will lead to a Pareto 

efficient outcome. This is called the first welfare theorem. It was first 

demonstrated mathematically by economists Kenneth Arrow and Gérard 

Debreu. However, the result only holds under the restrictive assumptions 

necessary for the proof (markets exist for all possible goods so there are 

no externalities, all markets are in full equilibrium, markets are perfectly 

competitive, transaction costs are negligible, and market participants 

have perfect information). In the absence of perfect information or complete 

markets, outcomes will generically be Pareto inefficient, per the Greenwald-

Stiglitz theorem. 

 

1.2 Discussion about energy exchange 

1.2.1 Spot market 

In a spot market, the seller delivers the goods immediately and the buyer pays 

for them “on the spot”. No conditions are attached to the delivery. This means 

that neither party can back out of the deal. A fruit and vegetable market is a 

good example of a spot market: you inspect the quality of the produce and tell 

the vendor how many cucumbers you want, she hands them to you, you pay 

the price indicated and the transaction is complete. If later on you decide that 

you would rather eat lettuce, you probably would not even think of trying to 

return the cucumbers and getting your money back. On the surface, the rules 

of such markets may appear very informal. In fact, they have behind them the 

weight of centuries of tradition. Modern spot markets for commodities such as 

oil, coffee or barley are superficially more sophisticated because the quantities 

traded are much larger and because traders communicate electronically. 

However, the principles are exactly the same.  

A spot market has the advantage of immediacy. As a producer, I can sell 

exactly the amount that I have available. As a consumer, I can purchase 

exactly the amount I need. Unfortunately, prices in a spot market tend to 

change quickly. A sudden increase in demand (or a drop in production) sends 

the price soaring because the stock of goods available for immediate delivery 

may be limited. Similarly, a glut in production or a dip in demand depresses 

the price. Spot markets also react to news about the future availability of a 



 

 

 

commodity. For example, a forecast about a bumper harvest of an agricultural 

commodity could send its price on the spot market (the spot price) Electricity 

pool plunging if enough consumers have the ability to wait until this harvest 

comes to market. Changes in the spot price are essentially unpredictable 

because if they were predictable, the market participants would anticipate 

them. Large and unpredictable variations in the price of a commodity make life 

harder for both suppliers and consumers of this commodity. Both are running 

businesses and are thus facing a variety of risks. Bad weather or a pest can 

ruin a harvest. The breakdown of a machine can stop production. A strike can 

stop the shipment of finished goods. While being in business means taking 

some risks, an excessive amount of risk endangers the survival of a business. 

Most businesses will therefore try to reduce their exposure to price risks. For 

example, the producer of a commodity will try to avoid being forced to sell its 

output at a very low price. Similarly, a consumer does not want to be obliged 

to buy an essential commodity at a very high price. This desire to avoid being 

exposed to the wild price fluctuations that are common in spot markets has led 

to the introduction of other types of transactions and markets. These markets 

are described in the following sections. 

1.2.2 Bilateral trading 

As its name implies, bilateral trading involves only two parties: a buyer and a 

seller. Participants thus enter into contracts without involvement, interference 

or facilitation from a third party. Depending on the amount of time available 

and the quantities to be traded, buyers and sellers will resort to different forms 

of bilateral trading:  

•Customized long-term contracts the terms of such contracts are flexible 

since they are negotiated privately to meet the needs and objectives of 

both parties. They usually involve the sale of large amounts of power 

(hundreds or thousands of MW) over long periods of time (several 

months to several years). The large transaction costs associated with 

the negotiation of such contracts make them worthwhile only when the 

parties want to buy or sell large amounts of energy. 

•Trading “over the counter” These transactions involve smaller amounts 

of energy to be delivered according to a standard profile, that is, a 



 

 

 

standardized definition of how much energy should be delivered during 

different periods of the day and week. This form of trading has much 

lower transaction costs and is used by producers and consumers to 

refine their position as delivery time approaches.  

•Electronic trading Participants can enter offers to buy energy and bids 

to sell energy directly in a computerized marketplace. All market 

participants can observe the quantities and prices submitted but do not 

know the identity of the party that submitted each bid or offer. When a 

party enters a new bid, the software that runs the exchange checks to 

see if there is a matching offer for the period of delivery of the bid. If it 

finds an offer whose price is greater than or equal to the price of the bid, 

a deal is automatically struck and the price and quantity are displayed 

for all participants to see. If no match is found, the new bid is added to 

the list of outstanding bids and will remain there until a matching offer 

is made or the bid is withdrawn or it lapses because the market closes 

for that period. A similar procedure is used each time a new offer is 

entered in the system. This form of trading is extremely fast and cheap. 

A flurry of trading activity often takes place in the minutes and seconds 

before the closing of the market as generators and retailers fine-tune 

their position ahead of the delivery period. 

The essential characteristic of these three forms of bilateral trading is that the 

price of each transaction is set independently by the parties involved. There is 

thus no “official” price. While the details of negotiated long-term contracts are 

usually kept private, some independent reporting services usually gather 

information about over the counter trading and publish summary information 

about prices and quantities in Managed spot market a form that does not reveal 

the identity of the parties involved. This type of market reporting and the 

display of the last transaction arranged through electronic trading enhance the 

efficiency of the market by giving all participants a clearer idea of the state and 

the direction of the market. 

 



 

 

 

1.2.3 Electricity pools 

In the early days of the introduction of competition in electrical energy trading, 

bilateral trading was seen as too big a departure from the existing practice. 

Since electrical energy is pooled as it flows from the generators to the loads, it 

was felt that trading might as well be done in a centralized manner and involve 

all producers and consumers. Competitive electricity pools were thus created. 

Pools are a very unusual form of commodity trading but they have well-

established roots in the operation of large power systems. In fact, some of the 

competitive electricity pools currently in operation were developed on the basis 

of collaborative pools created by monopoly utility companies 

With adjacent service territories. Rather than relying on repeated interactions 

between suppliers and consumers to reach the market equilibrium, a pool 

provides a mechanism for determining this equilibrium in a systematic way. 

While there are many possible variations, a pool essentially operates as 

follows: 

• Generating companies submit bids to supply a certain amount of 

electrical energy at a certain price for the period under consideration. 

These bids are ranked in order of increasing price. From this ranking, a 

curve showing the bid price as a function of the cumulative bid quantity 

can be built. This curve is deemed to be the supply curve of the market. 

• Similarly, the demand curve of the market can be established by asking 

consumers to submit offers specifying quantity and price and ranking 

these offers in decreasing order of price. Since the demand for electricity 

is highly inelastic, this step is sometimes omitted and the demand is set 

at a value determined using a forecast of the load. In other words, the 

demand curve is assumed to be a vertical line at the value of the load 

forecast. 

• The intersection of these “constructed” supply and demand curves 

represents the market equilibrium. All the bids submitted at a price lower 

than or equal to the market clearing price are accepted and generators 

are instructed to produce the amount of energy corresponding to their 

accepted bids. Similarly, all the offers submitted at a price greater than 

or equal to the market clearing price are accepted and the consumers 



 

 

 

are informed of the amount of energy that they are allowed to draw from 

the system. 

• The market clearing price represents the price of one additional 

megawatt-hour of energy and is therefore called the system marginal 

price or SMP. Generators are paid this SMP for every megawatt-hour 

that they produce, whereas consumers pay the SMP for every megawatt-

hour that they consume, irrespective of the bids and offers that they 

submitted.  

Paying the SMP for all the generation that was accepted may appear surprising 

at first glance. Why shouldn’t generators that were willing to produce for less 

be paid only their asking price? Wouldn’t this approach reduce the average 

price of electricity? The main reason this pay-as-bid scheme is not adopted is 

that it would discourage generators from submitting bids that reflect their 

marginal cost of production. All generators would instead try to guess what the 

SMP is likely to be and would bid at that level to collect the maximum revenues. 

At best, the SMP would therefore remain unchanged. Inevitably, some low-cost 

generators would occasionally overestimate the value of SMP and bid too high. 

These generators would then be left out of the schedule and be replaced by 

generators with a higher marginal cost of production. The SMP would then be 

somewhat higher than it ought to be. Furthermore, this substitution is 

economically inefficient because optimal use is not made of the available 

resources. In addition, generators are likely to increase their prices slightly to 

compensate themselves for the additional risk of losing revenue because of the 

uncertainty on the SMP. An attempt to reduce the price of electricity would 

therefore result in a price increase! 

1.2.4 Gate closure 

As we argued above, energy trading must stop at some point before real time 

to give the SO time to balance the system. How much time should elapse 

between this gate closure and real time is a hotly debated issue. System 

operators prefer longer intervals because this gives them more time to develop 

their plans and more flexibility in their selection of balancing resources. For 

example, if the gate closes half an hour before real time, there is not enough 

time to bring on-line a large coal-fired plant to make up a deficit in generation. 



 

 

 

Participants in the energy market, on the other hand, usually prefer a shorter 

gate closure because it reduces their exposure to risk. A load forecast 

calculated one hour ahead of real time is usually much more accurate than a 

forecast calculated four hours ahead. A retailer would therefore like to trade 

electronically up to the last minute to match its purchases with its anticipated 

load. This is considered preferable to relying on the managed spot market in 

which it is exposed to prices over which it has no control. Generators too prefer 

shorter gate closures because of the risk of sudden unit outage. If a unit fails 

after gate closure, there is nothing that the generator can do except hope that 

the spot market price will not be too high. On the other hand, if the unit fails 

before gate closure, the generator can try to make up the deficit in generation 

by purchasing at the best possible price on the electronic exchange. In general, 

traders prefer a true spot market that is driven solely by market forces to a 

managed spot market that is heavily influenced by complex technical 

considerations. 

1.2.5 Settlement process 

Commercial transactions are normally settled directly between the two 

parties involved: following the delivery of the goods by the seller to the 

buyer, the buyer pays the seller the agreed price. If the amount delivered is 

less than the amount contracted, the buyer is entitled to withhold part of the 

payment. Similarly, if the buyer consumes more than the agreed amount, the 

seller is entitled to an additional payment. This process is more complex for 

electricity markets because the energy is pooled during its transmission from 

the producers to the consumers. This is why a centralized settlement system 

is needed. 

For bilateral transactions in electrical energy, the buyer pays the seller the 

agreed price as if the agreed quantity had been delivered exactly. Similarly, 

the anonymous transactions arranged through screen-based trading are 

settled through the intermediary of the power exchange as if they had been 

executed perfectly. However, there will always be inaccuracies in the 

completion of the contracts. If a generator fails to produce the amount of 

energy that it has contracted to sell, the deficit cannot simply be withheld from 

this generator’s customers. Instead, to maintain the stability of the system, 

the system operator buys replacement energy on the managed spot market. 



 

 

 

Similarly, if a large user or retailer consumes less than it has bought, the 

system operator sells the excess on the managed spot market. These balancing 

activities make all bilateral contracts look as if they have been fulfilled 

perfectly. They also carry a cost. In most cases, the amount of money paid by 

the system operator to purchase replacement energy is not equal to the 

amount of money earned when selling excess energy. The parties that are 

responsible for the imbalances should pay the cost of these balancing activities. 

The first step in the settlement process consists, therefore, in determining the 

net position of every market participant. To this end, each generator must 

report to the settlement system the net amount of energy that it had 

contracted to sell for each period, including the energy traded through the 

managed spot market. This amount is subtracted from the amount of energy 

that it actually produced. If the result is positive, the generator is deemed to 

have sold this excess energy to the system. On the other hand, if the result is 

negative, the generator is treated as if it had bought the difference from the 

system. 

Similarly, all large consumers and retailers must report the net amount of 

energy that they had contracted to buy for each period, including the energy 

traded through the managed spot market. This amount is subtracted from the 

amount of energy actually consumed. Depending on the sign of the result, the 

consumer or the retailer is deemed to have sold energy to the system or bought 

energy from the system. These imbalances are charged at the spot market 

price. If this market is suitably competitive, this price should reflect the 

incremental cost of balancing energy. It is debatable whether the cost of the 

energy supplied by participants providing ancillary services should be included 

in this price. Settlement in a pool-based electricity market is more 

straightforward because all transactions take place through the pool. 

 

 

 



 

 

 

1.3 Barrel of oil vs kWh  

A barrel of oil equivalent (BOE) is a term used to summarize the amount of 

energy that is equivalent to the amount of energy found in a barrel of crude 

oil. There 159 liters in one barrel of oil, which will contain approximately 5.8 

million British Thermal Units (MBtus) or 1,700 kilowatt hours (kWh).  

The amount of fuel used to generate electricity depends on the efficiency 

or heat rate of the generator (or power plant) and the heat content of the fuel. 

Power plant efficiencies (heat rates) vary by types of generators, power plant 

emission controls, and other factors. Fuel heat contents also vary.  

Heat contents vary by type of petroleum product. The development of 

electricity markets is based on the premise that electrical energy can be treated 

as a commodity. There are, however, important differences between electrical 

energy and other commodities such as bushels of wheat, barrels of oil or even 

cubic meters of gas. These differences have a profound effect on the 

organization and the rules of electricity markets. The most fundamental 

difference is that electrical energy is inextricably linked with a physical system 

that functions much faster than any market. In this physical power system, 

supply and demand – generation and load – must be balanced on a second-

by-second basis. If this balance is not maintained, the system collapses with 

catastrophic consequences. Such a breakdown is intolerable because it is not 

only the trading system that stops working but also an entire region or country 

that may be without power for many hours. Restoring a power system to 

normal operation following a complete collapse is a very complex process that 

may take 24 h or more in large, industrialized countries. The social and 

economic consequences of such a system wide blackout are so severe that no 

sensible government would agree to the implementation of a market 

mechanism that significantly increases the likelihood of such an event. 

Balancing the supply and the demand for electrical energy in the short run is 

thus a process that simply cannot be left to a relatively slow-moving and 

unaccountable entity such as a market. In the short run, this balance must be 

maintained, at practically any cost, through a mechanism that does not rely on 

a market to select and dispatch resources. Another significant (but somewhat 

less fundamental) difference between electrical energy and other commodities 

is that the energy produced by one generator cannot be directed to a specific 



 

 

 

consumer. Conversely, a consumer cannot take energy from only one 

generator. Instead, the power produced by all generators is pooled on its way 

to the loads. This pooling is possible because units of electrical energy 

produced by different generators are indistinguishable. Pooling is desirable 

because it results in valuable economies of scale: the maximum generation 

capacity must be commensurate with the maximum aggregated demand rather 

than with the sum of the maximum individual demands. On the other hand, a 

breakdown in a system in which the commodity is pooled affects everybody, 

not just the parties to a particular transaction. Finally, the demand for electrical 

energy exhibits predictable daily and weekly cyclical variations. However, it is 

by no means the only commodity for which the demand is cyclical. The 

consumption of coffee, to take a simple example, exhibits two or three rather 

sharp peaks every day, separated by periods of lower demand. Trading in 

coffee does not require special mechanisms because consumers can easily 

store it in solid or liquid form. On the other hand, electrical energy must be 

produced at the same time as it is consumed. Since its short-run price elasticity 

of demand is extremely small, matching supply and demand requires 

production facilities capable of following the large and rapid changes in 

consumption that take place over the course of a day. Not all of these 

generating units will be producing throughout the day. When the demand is 

low, only the most efficient units are likely to be competitive and the others 

will be shut down temporarily. These less efficient units are needed only to 

supply the peak demand. Since the marginal producer changes as the load 

increases and decreases, we should expect the marginal cost of producing 

electrical energy (and hence the spot price of this energy) to vary over the 

course of the day. Such rapid cyclical variations in the cost and price of a 

commodity are very unusual. One could argue that trading in gas also takes 

place over a physical network in which the commodity is pooled and the 

demand is cyclical. However, the amount of energy stored in the gas pipelines 

is considerably larger than the amount of kinetic energy stored in electricity-

generating units. An imbalance between production and consumption of gas 

would therefore have to last much longer before it would cause a collapse of 

the pipeline network. Unlike an imbalance in a power system, it can be 

corrected through a market mechanism.  



 

 

 

1.4 Cost 

In this section, we define the various components of the production cost and 

introduce various curves that are used to characterize these costs. In the short 

run, some factors of production are fixed. The cost associated with these 

factors does not depend on the amount produced and is thus a fixed cost. For 

example, if a generating company has bought land and built a power plant on 

this land, the costs of the land and the plant do not depend on the amount of 

energy that this plant produces. On the other hand, the quantity of fuel 

consumed by this plant and, to a certain extent, the manpower required to 

operate it depend on the amount of energy it produces. Fuel and manpower 

costs are thus examples of variable costs. There is also a third class of costs 

called quasi-fixed costs. These are costs that the firm incurs if the plant 

produces any amount of output but does not incur if the plant produces 

nothing. For example, in the case of a generating plant, the cost of the fuel 

required to start up the plant is fixed in the sense that it does not depend on 

the amount of energy that the plant goes on producing. However, this start-up 

cost does not need to be paid if the plant stays idle. In the long run, there are 

no fixed costs because the firm can decide on the amount of money it spends 

on all production factors. At the limit, the firm’s long-run costs can be zero if 

it decides to produce nothing and goes out of business. A sunk cost is the 

difference between the amount of money a firm pays for a production factor 

and the amount of money it would get back if it sold this asset. For example, 

in the case of a power plant, the cost of the land on which the plant is built is 

not a sunk cost because land can always be resold. It is thus a recoverable 

cost. On the other hand, if production with this plant is no longer profitable, 

the difference between the cost of building the plant and its scrap metal value 

is a sunk cost. 

1.4.1 Short run costs 

The short run cost is important to consider in the electricity market. This is 

mostly because the start-up cost of a power plant is high. If a coal power plant 

would only run for 1 hour, the short run cost is very high. If it would run for a 

couple of days, the short run cost is much lower.  



 

 

 

It depends on which sort of power plant it is. In case of a hydro plant, the 

start-up cost is equal to 0 as is a nuclear plant. With a coal plant the cost is 

very high. 

A nuclear power plant’s start-up cost is equal to 0 because the operating and 

fuel costs are measured in units of $/MWh suggesting that these operating 

costs and fuel costs are variable or even marginal. However, these numbers 

are calculated from fixed costs divided by unit output over some period (e.g., 

a year). Nuclear operating and fuel costs calculated this way increase if output 

is lower, a strong indication that the costs are not variable or marginal. 

Calculating nuclear fuel costs in units of $/MWh allows comparisons to 

combustion-based generation fuel costs, but this approach is not useful in 

understanding nuclear power short-run cost. 

Nuclear fuel costs are incurred well before nuclear fuel is loaded during a 

refuelling outage. Nuclear fuel costs are not changed by a small and temporary 

change in output during the operating period that follows the refuelling outage. 

Regulated utility ratemaking estimates nuclear fuel cost, in $/MWh, by dividing 

the cost of nuclear fuel for a coming operating period by the 

plant’s projected output for the future operating period. This regulatory 

estimate of nuclear fuel cost is used to recover the cost of nuclear fuel in 

regulated rates for the future operating period. Regulatory recovery of nuclear 

fuel cost includes a “true-up” process after the operating period. The money 

collected in rates for nuclear fuel may be more or less than the actual nuclear 

fuel cost due to differences between actual and projected total output over the 

operating period. The true-up amounts are used to adjust rates in the future. 

A long nuclear plant outage might delay a scheduled nuclear refuelling outage, 

but a small change in output for a short period would not. PWR and BWR 

nuclear power plants shut down and conduct a refuelling/maintenance outage 

every 18 to 24 months. A nuclear power plant refuelling outage is a period of 

intense and highly coordinated maintenance activity that is only partly related 

to the actual refuelling activity. 

A small change in output for a short period will not change the refuelling outage 

schedule or the fuel costs. 



 

 

 

1.4.2 Long run costs 

We have argued above that, in the long run, there are no fixed costs because 

all the factors of production can be changed and the firm has the option to 

produce nothing and get out of business. However, the technology may be 

such that some costs are incurred independently of the level of production. 

There may therefore be some quasi fixed costs in the long run. The long-run 

average cost curve therefore tends to have a U-shape, as shown in the Figure 

below. 

What can we say about the relation between the short-run cost and the long-

run cost? In the long run, we can minimize the production cost for any level of 

output because we can adjust all the 

factors of production. On the other hand, 

in the short run, some of the production 

factors are fixed. The short-run Fixed 

costs production cost is therefore equal 

to the long-run production cost only for 

the value of output y* for which the fixed 

production factors were optimized. For 

other levels of output, the short-run cost 

is higher than the long-run cost. The short-run average cost curve is therefore 

above the long-run average cost curve, except for the output for which the 

fixed production factors have been optimized. At that point, the two curves are 

tangent, as shown in the figure on the side.  

We could, of course, select other sets of fixed production factors that would 

minimize the production cost for other values of the output y1, y2, . . . yn. In 

other words, we could build plants with other capacities. For each plant size, 

the short-run average cost would be equal to the long-run average cost only 

for the designed plant capacity. As the figure below shows, the long-run 

average cost curve is therefore the lower envelope of the short-run average 

cost curves.  



 

 

 

 

When all factors of production can be adjusted, the cost of a unit increase in 

production is given by the long-run marginal cost curve. The figure below 

illustrates two observations about this long-run marginal cost curve. First, the 

long-run and short-run marginal costs are equal only for the production level 

y* for which the fixed production factors have been optimized. Second, the 

long-run marginal cost is equal to the long-run average cost for the production 

level that results in the minimum long-run average cost. As long as the long-

run marginal cost is smaller than the long-run average cost, this long-run 

average cost decreases. As long as the average cost decreases, the production 

is said to exhibit economies of scale 

 

 

Long run marginal cost is defined as the marginal cost of supplying an 

additional unit of electrical energy when the installed capacity of the system, 

under specified reliability standards, is allowed to increase optimally in 

response to the marginal increase in demand. As such, it incorporates both 



 

 

 

capital and operating costs. The value of LRMC reflects the marginal cost of 

optimal production capacity expansion (forward-looking model) required to 

support a marginal increase in demand within a pre-defined planning horizon. 

  



 

 

 

Chapter 2: Fundamental issues in power economics 
2.3 hydrothermal coordination / scheduling 

� Different from other plants 

� No 2 are alike 

� Problems: 

� When building, large areas are flooded 

� Less water after the plant -> no water for irrigation 

� Security 

� Water level too low for boats 

� Constraints: 

� Build before other plants -> minimum amount of water 

� Fish in reservoir 

Too much water release -> big wave 

Scheduling 

� Up to years of scheduling 

� Water used at a rate of filling the reservoir 

� Depends on weather, melting of snow 

� Problems 

� Hard to meet all the constraints 

Scheduling energy 

� 2 generating units: Hydro and steam 

� Minimize use of steam unit 

� Steam plant used at minimum and at constant cost 

� Hydro plant changes its output, steam plant at constant output 

� Hydro plant is limited to certain amount of time 

Pumped storage hydro plant 

� Used when peak loads to save fuel costs 

� Pumping water back up = saving energy 

� Pumping water to fill the reservoir for use later 

 

 



 

 

 

Dynamic programming 

� Use of a special algorithm to schedule the hydro unit 

� Considers the variables 

� Inflow rate 

� Volume of storage 

� Flow rate 

� Power output 

� Spillage 

� Hydraulic coupling (plants build after each other) 

 

2.4 Unit commitment issue 

Economic Dispatch: Problem Definition 

� Given load 

� Given set of units on-line 

� How much should each unit generate to meet this load at minimum cost? 

Constraints 

� Unit constraints:  Maximum / minimum generating capacity 

      Minimum “up time” 

      Minimum “down time” 

� System constraints: Load/generation balance 

      Reserve generation capacity 

      Emission constraints 

      Network constraints 

� Start-up costs 

� Cost incurred when we start a generating unit 

� Different units have different start-up costs 

 

 

 

 



 

 

 

Flexible plants 

� Power output can be adjusted (within limits) 

� Examples: 

� Coal-fired 

� Oil-fired 

� Open cycle gas turbines 

� Combined cycle gas turbines 

� Hydro plants with storage 

� Status and power output can be optimized 

Inflexible plants 

� Power output cannot be adjusted for technical or commercial reasons 

� Examples: 

� Nuclear 

� Run-of-the-river hydro 

� Renewables (wind, solar,…) 

� Output treated as given when optimizing 

Unit commitment 

� Total generation = Demand + reserve 

� Reserve:  Protects frequency if loss of unit 

   Rapid increase demand 

� Using unit commitment to save money  

� 3 methods  Priority list method 

Dynamic programming 

Lagrange optimization 

Priority list method 

� Divide units according to priority 

� Cost effective -> least cost effective 

� Using cost effective plant the most 

� Change in load, follow these steps: 

� Shutting down, enough generation demand + reserve 

� Hours of shutdown 



 

 

 

� Less / more than minimum shutdown time 

� Calculate :  Cost plant running at minimum 

    Cost plant shutting off + start up (banking or cooling) 

� Repeat 

 

Dynamic programming 

� Divide units according to priority 

� Cost effective -> least cost effective 

� Using cost effective plant the most 

� Change in load, follow these steps: 

� Shutting down, enough generation demand + reserve 

� Hours of shutdown 

� Less / more than minimum shutdown time 

� Calculate :  Cost plant running at minimum 

    Cost plant shutting off + start up (banking or cooling) 

� Repeat 

 

 

Lagrange optimization 

� Thesis 

� Cost function 

� Constraints 

� Generation limits 

� Transmission losses 

 

 

  



 

 

 

Chapter 3: Optimal dispatching via nonlinear 

constraint optimization tools 
3.1Economic dispatch 
The economic dispatch (ED) problem consists in allocating the total demand 

among generating units so that the production cost is minimized. Generating 

units have different production costs depending on the prime energy source 

used to produce electricity (mainly coal, oil, natural gas, uranium, and water 

stored in reservoirs). And these costs vary significantly; for example, the 

marginal costs for nuclear, coal, and gas units may vary considerably, taking 

on values ranging between $0.03 and $0.20 per kWh. To appreciate the 

advantages of dispatching a power system according to the solution of the ED 

problem, consider the case where a power plant supplies 10,000MWduring 1 h 

at an average cost of $0.05/kWh; if the consumers buy this energy at the rate 

of $0.06/kWh, this arrangement results in a net profit to the supplier of 

$100,000/h. In this case an improvement in supply efficiency of just 1% 

through the use of ED would result in a profit increment of $5000/h or $43.8 

million in one year. Also, note that this increment in profit does not necessarily 

have to end up in its entirety in the pockets of the producer, but, rather, could 

also be used to reduce the consumer price. Therefore, it is clear that there is 

a strong incentive for both producers and consumers to increase the efficiency 

of the generating units 

3.2 Lagrangian multiplier and karush kuhn tucker conditions 

Definition of the karush kuhn tucker conditions 

The Karush-Kuhn-Tucker (KKT) conditions are conditions that the optimal 

solutions of a broad range of optimization problems should satisfy. For some 

problems the KKT conditions cannot be meaningfully formulated, and thus they 

cannot characterize optimal solutions for these problems. Additionally, KKT 

conditions can be necessary but not sufficient conditions, i.e., solutions 

meeting them are not necessarily optimal but optimal solutions need to meet 

them. Also, KKT conditions are first-order conditions, i.e., conditions that are 

formulated using first derivative vectors and matrices (gradients and 

Jacobians). To formulate the KKT conditions it is convenient to define the 

Lagrangian function as the cost functions in the following 4 cases. 



 

 

 

Definition of the Lagrangian multiplier 

In mathematical optimization, the method of Lagrange multipliers (named 

after Joseph Louis Lagrange) is a strategy for finding the local maxima and 

minima of a function subject to equality constraints. 

λ* in function of the power output 

As seen in following cases, the λ* increases linear with the demand if the 

transmission losses are not considered. When you implement the transmission 

losses, this function isn’t a linear function anymore. 

  



 

 

 

3.3 Cases 

3.3.1 Case 1 = OD with equality constraints 

I will solve the following problem with 2 and 3 plants, the simple form. This 

will optimize the load distribution and minimize the cost of operation.  

• An electrical power system comprises two (2) generating units with 

power outputs P1, P2 and hourly cost  given by the equations below: 

C1 = 100 + 20P1 + 0.025P1² 

C2 = 200 + 25P2 + 0.05P2² 

 

• An electrical power system comprises three (3) generating units with 

power outputs P1, P2, P3 and hourly cost given by the equations 

below: 

 

C1 = 1200 + 20P1 + 0.005P1² 

C2 = 1000 + 30P2 + 0.005P2² 

C3 = 1000 + 10P3 + 0.010P3² 

 
 

 

3.3.1.1 Solved manually 

C1 = 1200 + 20 * P1 + 0.005 * P1^2 

C2 = 1000 + 30 * P2 + 0.005 * P2^2 

C3 = 1000 + 10 * P3 + 0.010 * P3^2 

C_tot = 3200 + 20 * P1 + 30 * P2 + 10 * P3 + 0.005 * P1^2 + 0.005 

* P2^2 + 0.010 * P3^2 

Constraint: P_demand = P1 + P2 + P3 = 4500MW 

F(P1,P2,P3) = 3200 + 20*P1 + 30*P2 + 10*P3 + 0.005*P1^2 + 

0.005*P2^2 + 0.010 

*P3^2 + λ*(4500-P1-P2-P3) 

Partial derivatives: 

F(P1) = 20 + 0.010 * P1 - X = 0 -> P1 = X - 20 / 0.010 

F(P2) = 30 + 0.010 * P2 - X = 0 -> P2 = X - 30 / 0.010 

F(P3) = 10 + 0.020 * P3 - X = 0 -> P3 = X - 10 / 0.020 

F(X) = 4500 - P1 - P2 - P3 = 0 

4500 - (X - 20 / 0.010) - (X - 30 / 0.010) - (X - 10 / 0.020) = 0 

4500 = (X - 20 / 0.010) - (X - 30 / 0.010) - (X - 10 / 0.020) 

4500 = 5 * X - 110 / 0.020 

 

-> λ_optimal = 40 



 

 

 

P1_optimal = 40 - 20 / 0.010 = 2000 

P2_optimal = 40 - 30 / 0.010 = 1000 

P3_optimal = 40 - 10 / 0.020 = 1500 

 

 

Applied on 1 demand level 

Two Power Plant Example 

 P_demand λ* P_output Lb λ* Ub λ* 

P1 40 23 40 0 0 

P2 40 23 -20 = 0 0 0 

 

C1 = 100 + 20 * (40) + 0.025 * (40)² =  940 €/h 

C2 = 200 + 25 * (0) + 0.05 * (0)² = 0 €/h 

Total cost = C1 + C2 = 940 €/h 

 

 P_demand λ* P_output Lb λ* Ub λ* 

P1 600 41.667 433.33 0 0 

P2 600 41.667 166.667 0 0 

 

C1 = 100 + 20 * (433.33) + 0.025 * (433.33)² =  13460.972 €/h 

C2 = 200 + 25 * (166.667) + 0.05 * (166.667)² = 5755.644 €/h 

Total cost = C1 + C2 + C3 = 19216.617 €/h 

 

 

Three Power Plant Example 

 P_demand λ* P_output Lb λ* Ub λ* 

P1 4500 40 2000 0 0 

P2 4500 40 1000 0 0 

P3 4500 40 1500 0 0 

 

If we implement these value’s into the cost function, we can determine the 

cost of every power generation plant and the total cost. 

C1 = 1200 + 20 * (2000) + 0.005 * (2000)² = 61200 €/h 

C2 = 1000 + 30 * (1000) + 0.005 * (1000)² = 36000 €/h 

C3 = 1000 + 10 * (1500) + 0.010 * (1500)² = 38500 €/h 

Total cost = C1 + C2 + C3 = 135700 €/h 
  



 

 

 

Applied on more demand levels 

Exposito 

Now we calculate the λ* for different P_demand levels and plot them onto a 

graph as seen below. The initial demand level is P_demand = 40 and in steps 

of 25 goes to P_demand = 600.  

P_demand λ* 

40 23.000 

60 23.667 

80 24.333 

100 25.000 

120 25.667 

140 26.333 

160 27.000 

180 27.666 

200 28.333 

220 29.000 

240 30.000 

260 30.333 

280 31.000 

300 31.666 

320 32.333 

340 33.000 

360 33.666 

380 34.333 

400 35.000 

420 35.666 

440 36.333 

460 37.000 

480 37.666 

500 38.333 

520 39.000 

540 39.666 

560 40.332 

580 40.999 

600 41.666 

 

 

 

 

 

 



 

 

 

Three Power Plant Example 

Now we calculate the λ* for different P_demand levels and plot them onto a 

graph as seen below. The initial demand level is Pd = 250 and in steps of 100 

goes to Pd = 5000.  

P_demand λ* 

250 23.000 

350 23.400 

450 23.800 

550 24.200 

650 24.600 

750 25.000 

850 25.400 

950 25.800 

1050 26.200 

1150 26.600 

1250 27.000 

1350 27.400 

1450 27.800 

1550 28.200 

1650 28.600 

1750 29.000 

1850 29.400 

1950 29.800 

… … 

3250 35.000 

3350 35.400 

3450 35.800 

3550 36.200 

3650 36.600 

3750 37.000 

3850 37.400 

3950 37.800 

4050 38.200 

4150 38.600 

4250 39.000 

4350 39.400 

4450 39.800 

4550 40.200 

4650 40.600 

4750 41.000 

4850 41.400 

4950 41.800 

5000 42.000 



 

 

 

Observations 

Two Power Plant Example 

As you can see on the graph, the value of λ* increases linearly with the demand 

level. This means that the production cost is higher when the demand level 

raises. 

From the multiple values that we calculate, we can say that the participation 

factors are 2/3 for unit 1 and 1/3 for unit 2. This is a reasonable result as the 

cost of unit 2 increases with its production at a higher rate than the cost of unit 

1, that is, b1 =0.05<b2 =0.1. In this sense, we can say that unit 1 is 

incrementally more efficient than unit 2. 

We can deduct from this that unit 1 is more power efficient is than unit 2. 

The demand level can be so low that the calculated value of the second 

generation unit is negative. Using this plant would result in a loss so the plant 

is shut off or operated at his minimum. 

The lower bound λ* is not activated for plant 1 or 2 when applied on the 

demand level of 40. 

This optimal solution satisfies the demand balance equation. However, because 

the demand is low enough as in this case, the generation output of P2 becomes 

negative which violates the minimum power output of unit 2. This shows that 

the power generation limits have not been taking into account in solving the 

problem, so the results are infeasible. 

Three Power Plant Example 

As you can see, the value of λ* increases linear with the demand level. This 

means that the production cost is higher when the demand level raises. 

The operational cost of each station is considered only depend on its generated 

power. 

This optimal solution satisfies the demand balance equation. However, because 

the demand is low enough as in this case, the generation output of P2 becomes 

negative which violates the minimum power output of unit 2. This shows that 

the power generation limits have not been taking into account in solving the 

problem, so the results are infeasible. 



 

 

 

3.3.2 Case2 = OD with equality constraints and generation limits 

I will solve the following problem with 2 and 3 plants, the simple form and 

taking the generation limits into account. This will optimize the load distribution 

and minimize the cost of operation.  

• An electrical power system comprises two (2) generating units with 

power outputs P1, P2 and is constrained by the generation limits. The 

hourly cost is given by the equations below. 

C1 = 100 + 20P1 + 0.025P1² 
C2 = 200 + 25P2 + 0.05P2² 
 
Generation limits:  

0 MW ≤ P1 ≤ 400 MW 
0 MW ≤ P2 ≤ 300 MW 

 

 

• An electrical power system comprises three (3) generating units with 

power outputs P1, P2, P3 and is constrained by the generation limits. 

The hourly cost is given by the equations below. 

C1 = 1200 + 20P1 + 0.005P1² 
C2 = 1000 + 30P2 + 0.005P2² 
C3 = 1000 + 10P3 + 0.010P3² 
 
Generation limits:  

1000 MW ≤ P1 ≤ 5000 MW 
100 MW ≤ P2 ≤ 900 MW 
2000 MW ≤ P3 ≤ 3000 MW 

 

 

Two Power Plant Example 

There are 2 examples for this case to show the impact of the generation limit 

on the marginal cost. 

 P_demand λ* P_output Lb λ* Ub λ* 

P1 40 22 40 0 0 

P2 40 22 0 3.000 0 

 

C1 = 100 + 20 * (40) + 0.025 * (40)² =  940 €/h 
C2 = 200 + 25 * (0) + 0.05 * (0)² = 0 €/h 
Total cost = C1 + C2 + C3 = 135 €/h 
 



 

 

 

 P_demand λ* P_output Lb λ* Ub λ* 

P1 600 45 400 0 5.000 

P2 600 45 200 0 0 

 

C1 = 100 + 20 * (400) + 0.025 * (400)² =  12100 €/h 
C2 = 200 + 25 * (200) + 0.05 * (200)² = 7200 €/h 
Total cost = C1 + C2 + C3 = 19300 €/h 
 

Three Power Plant Example 

 

 P_demand λ* P_output Lb λ* Ub λ* 

P1 4500 37.5 1750 0 0 

P2 4500 37.5 750 0 0 

P3 4500 37.5 2000 12.5 0 

 

C1 = 1200 + 20 * (1750) + 0.005 * (1750)² = 51512.5 €/h 
C2 = 1000 + 30 * (750) + 0.005 * (750)² = 26312.5 €/h 
C3 = 1000 + 10 * (2000) + 0.010 * (2000)² = 61000 €/h 
Total cost = C1 + C2 + C3 = 138825 €/h 
 

Observations 

Two Power Plant Example 

The solution of the first example implies that unit 2 operates at its minimum 

power output of 0MW. This is the same as in case 1 because the negative 

solution of case 1 is equal to 0. 

In the second example the upper limit of the first generation plant is reached. 

This means that the second generation unit has to produce the remaining 

demanded power even though this plant is less cost effective. 

If this result is compared to the first case without generation limits, it becomes 

clear that the cost increases because the first plant isn’t used to its full 

potential. 

The KKT condition is reached, this means that the optimal conditions aren’t 

satisfied. 

Three Power Plant Example 

The solution implies that the third power generation unit is used at its minimum 

power output of 2000MW. This is not the same as the first case. This means 

that the third power plant has to work at a higher power output. The difference 



 

 

 

in cost/h makes it clear that the third unit is not operating at its optimal 

marginal cost. 

 

3.2.3 Case 3 = OD with equality constraints and transmission losses  
The following problem is solved with 2 and 3 plants, taking the transmission 

losses into account. This will optimize the load distribution and minimize the 

cost of operation. The following results will point out that the marginal value 

λ* isn’t a linear function with the demand. This was an assumption   

• An electrical power system comprises two (2) generating units with 

power outputs P1, P2 and is constrained by the transmission losses. The 

generation limits are not taken into account. The hourly cost is given by 

the equations below. 

C1 = 100 + 20P1 + 0.025P1² 
C2 = 200 + 25P2 + 0.05P2² 

 
Transmission losses: 

PLOSS(Ρ1,Ρ2) = 0.5P1 + 0.5P2 

α = 0.5 , β = 0.5 

 

 

• An electrical power system comprises three (3) generating units with 

power outputs P1, P2, P3 and is constrained by the transmission losses. 

The generation limits are not taken into account. The hourly cost is given 

by the equations below. 

C1 = 1200 + 20P1 + 0.005P1² 
C2 = 1000 + 30P2 + 0.005P2² 
C3 = 1000 + 10P3 + 0.010P3² 

 
Transmission losses: 

PLOSS(Ρ1,Ρ2) = 0.5P1 + 0.5P2 

α = 0.5 , β = 0.5 , γ = 0 

 

 



 

 

 

Applied on 1 demand level 

Two Power Plant Example 

 P_demand λ* P_output Lb λ* Ub λ* 

P1 40 48.67 86.67 0 0 

P2 40 48.67 0 0 0 

 

C1 = 100 + 20 * (86.67) + 0.025 * (86.67)² =  2021.19 €/h 
C2 = 200 + 25 * (0) + 0.05 * (0)² = 0 €/h 
Total cost = C1 + C2 + C3 = 2021.19 €/h 
 

 

Three Power Plant Example 

 P_demand λ* P_output Lb λ* Ub λ* 

P1 4500 75 1750 0 0 

P2 4500 75 750 0 0 

P3 4500 75 3250 0 0 

 

C1 = 1200 + 20 * (1750) + 0.005 * (1750)² = 51512.5 €/h 
C2 = 1000 + 30 * (750) + 0.005 * (750)² = 26312.5 €/h 
C3 = 1000 + 10 * (3250) + 0.010 * (3250)² = 139125 €/h 
Total cost = C1 + C2 + C3 = 216950 €/h 
 
Applied on multiple demand levels  

Two Power Plant Example 

Now we calculate the λ* for different α and β levels and plot them onto a graph 

as seen on the next page. The initial α and β = 0 and go up to 0.8 in 20 steps. 

The demand level is fixed on 40MW. The values only go to 0.8 because above 

that, the marginal cost λ* becomes an infinite high number. 

 



 

 

 

 

 

 

Three Power Plant Example 

Now we calculate the λ* for different α and β levels and plot them onto a graph 

as seen below. The initial α and β = 0 and go up to 1 in 20 steps. The P_demand 

level is fixed on 4500MW. 

The values of α and β are plotted in a 3D graph with α on the X-axis, β on the 

Y-axis and λ* on the Z-axis. 

 



 

 

 

 

Observations 

Two Power Plant Example 

The output value of P1 show that the generated power has to be higher than 

the demanded power. This is because of the transmission losses. There will 

always be transmission losses so the output must always be higher. 

As seen in the graph, increasing the transmission loss doesn’t change the 

marginal cost when the loss is still low, but when the losses are approaching 

the value 1, the cost is increases exponentially. 

Three Power Plant Example 

When interpreting the graph of multiple values of α and β that are plotted in 

function of the marginal cost function λ*, it is clear that the higher the 

transmission losses, the marginal cost raises too. This is not a linear function. 

Comparison with case 1 

In case 1 the calculations aren’t affected by the losses. This is a pure theoretical 

approach to the optimization problem. This is to have a target value of what 

every generation unit should produce. In a real world optimization problem it’s 

important to factor in the different inequality constraints like the transmission 

losses. If this is not the case, the delivered power doesn’t meet the demanded 

power. The bigger the losses are, the higher the power output is affected. 

3.2.4 Case 4 = OD with equality constraints, generation limits and 

transmission losses 

The following problem is solved with 2 and 3 plants, taking the transmission 

losses and the generation limits into account. This will optimize the load 

distribution and minimize the cost of operation.  

• An electrical power system comprises two (2) generating units with 

power outputs P1, P2 and is constrained by the generation limits. The 

hourly cost is given by the equations below. 

C1 = 100 + 20P1 + 0.025P1² 

C2 = 200 + 25P2 + 0.05P2² 
 

Generation limits:  

0 MW ≤ P1 ≤ 400 MW 
0 MW ≤ P2 ≤ 300 MW 
 



 

 

 

Transmission losses: 
 
PLOSS(Ρ1,Ρ2) = 0.5P1 + 0.5P2 

α = 0.5 , β = 0.5  

 
• An electrical power system comprises three (3) generating units with 

power outputs P1, P2, P3 and is constrained by the generation limits. 

The hourly cost is given by the equations below. 

C1 = 1200 + 20P1 + 0.005P1² 
C2 = 1000 + 30P2 + 0.005P2² 
C3 = 1000 + 10P3 + 0.010P3² 
 

Generation limits:  

1000 MW ≤ P1 ≤ 5000 MW 
100 MW ≤ P2 ≤ 900 MW 
2000 MW ≤ P3 ≤ 3000 MW 

 

Transmission losses: 
 
P_loss(Ρ1,Ρ2) = 0.5P1 + 0.5P2 
α = 0.5 , β = 0.5 , γ = 0 

 
 
 
 

Two Power Plant Example 

 P_demand λ* P_output Lb λ* Ub λ* 

P1 40 48 80 0 0 

P2 40 0 0 0 0 

 

C1 = 100 + 20 * (80) + 0.025 * (80)² =  1860 €/h 
C2 = 200 + 25 * (0) + 0.05 * (0)² = 0 €/h 
Total cost = C1 + C2 + C3 = 1860 €/h 
 

 P_demand λ* P_output Lb λ* Ub λ* 

P1 600 48 300 0 0 

P2 600 0 400 0 0 

 

 

C1 = 100 + 20 * (300) + 0.025 * (300)² =  8350 €/h 
C2 = 200 + 25 * (400) + 0.05 * (400)² = 18200 €/h 
Total cost = C1 + C2 + C3 = 26550 €/h 
 



 

 

 

Three Power Plant Example 

 P_demand λ* P_output Lb λ* Ub λ* 

P1 4500 82 2900 0 0 

P2 4500 82 900 0 0 

P3 4500 82 3000 0 0 

 

C1 = 1200 + 20 * (2900) + 0.005 * (2900)² = 101250 €/h 
C2 = 1000 + 30 * (900) + 0.005 * (900)² = 32050 €/h 
C3 = 1000 + 10 * (3000) + 0.010 * (3000)² = 121000 €/h 
Total cost = C1 + C2 + C3 = 254300 €/h 
 

Observations 

Two Power Plant Example 

The output value of P1 show that the generated power has to be higher than 

the demanded power. This is because of the transmission losses. There will 

always be transmission losses so the output must always be higher. 

Because of the generation limits, the power that the first generation unit has 

to produce is lower.  

Three Power Plant Example 

The third generation unit must produce at its maximum output. Because of 

this, the marginal value and therefore the total production cost is higher. 

  



 

 

 

Chapter 4: Conclusion 
We show how different constraints can affect the output of a power generation 

unit. We provide 12 fairly detailed examples of models optimal dispatching 

whose results can be replicated by the reader. The first example, which looks 

at the optimal dispatching with only equality constraints, gives us a basic target 

value that we can base ourselves on for the next calculations. 

The second example, which adds the power generation limits to the first basic 

example, lets us understand the impact of the limits of different units. This 

affects all included generating units. Because of this constraint, the most cost 

effective unit can only be used to its limit and the lesser cost effective units 

have to produce more. This results in a higher cost thus a higher price. 

In the third example, the transmission losses are factored in. This shows that 

because of these losses, a higher power output is required to meet the power 

demand. Concluding from the graph we can see that the transmission losses 

are not a linear function with the marginal cost. 

In the fourth example, we factor in the generation limits together with the 

transmission losses. This is the most realistic approach to optimizing the 

generation units we calculate in this thesis. It considers two realistic constraints 

that are represented in practical calculations. 
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Appendix 

B. Fmincon 

Objective functions 

Two Power Plant Example 

 

function f = Exposito51_2Plants_HourlyCosts_objfcn(x) % 
 
C1 = 100 + 20.0*x(1) + 0.5*0.05*x(1)^2 ; 
C2 = 200 + 25.0*x(2) + 0.5*0.10*x(2)^2 ; 
 
f = C1 + C2 ; % 
end  

Three Power Plant Example 

 

function f = GPag_3Plants_HourlyCosts_objfcn(x) % 
 
C1 = 1200 + 20 * x(1) + 0.005 * x(1)^2; 
C2 = 1000 + 30 * x(2) + 0.005 * x(2)^2 ; 
C3 = 1000 + 10 * x(3) + 0.010 * x(3)^2 ; 
 
f = C1 + C2 + C3; % 
end 

 

Case 1: 

Applied on 1 demand level 

Two Power Plant Example: 

 

% Case 1: Equality constraint, no losses 
% % =============================================== = 
clear all ; close all ; clc 
disp( ' ***** 16 April 2016 **** ' ); disp(date) 
disp( ' Case 1 = only Equality Constraints - No Losses ' )  
disp( ' *** Equality Constraints Aeq, Beq reflect the ins taneous Power 
Balance *** ' ) 
disp( ' P1 + P2 = P_Demand + P_Const_Loss ' ) 
P_Demand = 40 
 
A_eq = -[1 1 ] ; B_eq = -P_Demand  
%==== a , b 
a = []; b = []; 
%==== lb , ub 
lb = []; ub = []; 
x0 = [0 ; 0 ]; 
 
[Popt_Case1, objfcn_value, exitflag, output_Case1, lambda] = 
fmincon(@Exposito51_2Plants_HourlyCosts_objfcn,x0,a ,b,A_eq,B_eq,lb,ub,[] );  
 
disp( ' ***** Optimal Values for P1, P2, lambda.eqlin etc ... are... ' ) 
P1_opt = Popt_Case1(1) 
P2_opt = Popt_Case1(2) 
 
disp( ' ***** Output structure is: ' ); output_Case1 
disp( ' **** "lambda.eqlin" is Optimal lambda for Linear equalities ' ); 
lambda. 
eqlin 
disp( ' **** "lambda.lower" is Optimal lambda for Lower b ounds "lb" 
inequalities ' ); 
lambda.lower 



 

 

 

disp( ' **** "lambda.upper" is Optimal lambda for Upper b ounds "ub" 
inequalities ' ); 
lambda.upper 
disp( ' **** "lambda.ineqlin" is Optimal lambda for Linea r inequalities ' ); 
lambda. 
Ineqlin 
 

Three Power Plant Example 
% Case 1: Equality constraint, no losses 
% % =============================================== = 
clear all ; close all ; clc 
disp( ' ***** 16 April 2016 **** ' ); disp(date) 
disp( ' Case 1 = only Equality Constraints - No Losses ' )  
disp( ' *** Equality Constraints Aeq, Beq reflect the ins taneous Power 
Balance *** ' ) 
disp( ' P1 + P2 = P_Demand + P_Const_Loss ' ) 
P_Demand = 4500 
 
A_eq = -[1 1 1] ; B_eq = -P_Demand % -(P_Demand + P_Const_Loss) ; 
%==== a , b 
a = []; b = []; 
%==== lb , ub 
lb = []; ub = []; 
%=== Initial Guess 
%x0 = [P1_min; P2_min; P3_min]; 
x0 = [0 ; 0 ; 0]; 
 
[Popt_Case1, objfcn_value, exitflag, output_Pagiata kis_Case1, lambda] = 
fmincon 
(@GPag_3Plants_HourlyCosts_objfcn, x0, a, b, A_eq, B_eq,lb,ub,[] ); % 
 
disp( ' ***** Optimal Values for P1, P2, lambda.eqlin etc ... are... ' ) 
P1_opt = Popt_Case1(1) 
P2_opt = Popt_Case1(2) 
P3_opt = Popt_Case1(3) 
 
disp( ' ***** Output structure is: ' ); output_Pagiatakis_Case1 
disp( ' **** "lambda.eqlin" is Optimal lambda for Linear equalities ' ); 
lambda. 
eqlin 
disp( ' **** "lambda.lower" is Optimal lambda for Lower b ounds "lb" 
inequalities ' ); 
lambda.lower 
disp( ' **** "lambda.upper" is Optimal lambda for Upper b ounds "ub" 
inequalities ' ); 
lambda.upper 
disp( ' **** "lambda.ineqlin" is Optimal lambda for Linea r inequalities ' ); 
lambda. 
ineqlin 
%========== END ============ 

 

  



 

 

 

Applied on more demand levels 

Two Power Plant Example 
clear all ; close all ; clc 
disp( ' ***** 1 jun 2016 **** ' ); disp(date) 
disp( ' Case 1: only Equality Constraints - No Losses ' ) % Three Power Plant 
Example1 = page17  
disp( ' *** Equality Constraints Aeq, Beq reflect the ins taneous Power 
Balance *** ' ) 
disp( ' P1 + P2 = P_Demand + P_Const_Loss ' ) 
A_eq = -[1 1]  
%==== a , b 
a = []; b = []; 
%==== lb , ub 
lb = []; ub = []; 
%=== Initial Guess 
x0 = [0 ; 0 ]; 
 
P_Demand_Initial = 40  
P_Demand_Final = 600 
Load_Step = 20 
 
%====== {P_Demand, i} LOOP 
i=1; 
for P_Demand = P_Demand_Initial:Load_Step:P_Demand_Fina l % 
%--- Varying Load = Varying P_Demand 
P_Demand_save(i)= P_Demand ; 
%--- OPTIMIZE with respect to a Varying Load = P_De mand 
B_eq = -P_Demand ;  
[Popt, objfcn_value, exitflag, output, lambda ] = 
fmincon(@Exposito51_2Plants_HourlyCosts_objfcn,x0,a ,b,A_eq,B_eq,lb,ub,[] );  
 
Popt_Vector(:,i)= Popt ; 
Objfcn_Value_Vector(i)= objfcn_value ; 
 
lambda_Vector(i) = lambda ; 
lambda_equality_Vector(i) = lambda.eqlin ; 
i=i+1; 
end  

Three Power Plant Example 
clear all ; close all ; clc 
disp( ' ***** 16 April 2016 **** ' ); disp(date) 
disp( ' Example#1: only Equality Constraints - No Losses ' ) disp( ' *** 
Equality Constraints Aeq, Beq reflect the instaneou s Power Balance *** ' ) 
disp( ' P1 + P2 + P3 = P_Demand + P_Const_Loss ' ) 
 
A_eq = -[1 1 1] ;  
%==== a , b 
a = []; b = []; 
%==== lb , ub 
lb = []; ub = []; 
%=== Initial Guess 
x0 = [0 ; 0 ; 0 ]; 
P_Demand_Initial = 250  
P_Demand_Final = 5000 
Load_Step = 100 
 
i=1; 
for P_Demand = P_Demand_Initial:Load_Step:P_Demand_Fina l % 
P_Demand_save(i)= P_Demand ; 
B_eq = -P_Demand;  
 
[Popt, objfcn_value, exitflag, output, lambda ] = 
fmincon(@GPag_3Plants_HourlyCosts_objfcn, x0, a,b, A_eq, B_eq,lb,ub,[] ); 
 
Popt_Vector(:,i)= Popt ; 
Objfcn_Value_Vector(i)= objfcn_value ; 
lambda_Vector(i) = lambda ; 
lambda_equality_Vector(i) = lambda.eqlin ; 
i=i+1; 
end 



 

 

 

Case2: 

Two Power Plant Example: 
% Case 2 
% ================================================ 
clear all ; close all ; clc 
disp( ' ***** 05-May-2016 **** ' ); disp(date) 
disp( ' Exposito Example 5.3: includes the Generation Lim its {Pmin,Pmax}e 
given in 
Example 5.1 p. 169 + Power-Balance-Equality-Constra ints - No Losses ' )  
disp( ' *** Equality Constraints Aeq, Beq reflect the ins taneous Power 
Balance P1 + P2 
+ P3 = P_Demand + P_Const_Loss.... ' ) 
disp( ' ...whereas Pmin,Pmax inequalities are handled via  lb,ub ' ) 
 
P_Demand = 40  
A_eq = -[1 1 ] ; B_eq = -P_Demand  
a = []; b = []; 
lb = [0 ; 0 ]; ub = [400 ; 300]; 
x0 = [0 ; 0 ]; 
 
[Popt_Case2, objfcn_value, exitflag, output_Case2, lambda] = 
fmincon(@Exposito51_2Plants_HourlyCosts_objfcn,x0, a,b,A_eq,B_eq,lb,ub,[] );  
 
disp( ' ***** Optimal Values for P1, P2, P3, lambda.eqlin  etc... are... ' ) 
P1_opt = Popt_Case2(1) 
P2_opt = Popt_Case2(2) 
 
disp( ' ***** Output structure is: ' ); output_Case2 
disp( ' **** "lambda.eqlin" is Optimal lambda for Linear equalities ' ); 
lambda. 
eqlin 
disp( ' **** "lambda.lower" is Optimal lambda for Lower b ounds "lb" 
inequalities ' ); 
lambda.lower 
disp( ' **** "lambda.upper" is Optimal lambda for Upper b ounds "ub" 
inequalities ' ); 
lambda.upper 
disp( ' **** "lambda.ineqlin" is Optimal lambda for Linea r inequalities ' ); 
lambda. 
ineqlin 
disp( ' ***** Optimal Value of OBJ_FUNCTION is: ' ); objfcn_value 
%========== END ============ 

Three Power Plant Example: 
% Case 2 
% % =============================================== = 
clear all ; close all ; clc 
disp( ' ***** 16 April 2016 **** ' ); disp(date) 
disp( ' Case 1 = only Equality Constraints - No Losses ' )  
disp( ' *** Equality Constraints Aeq, Beq reflect the ins taneous Power 
Balance *** ' ) 
disp( ' P1 + P2 = P_Demand + P_Const_Loss ' ) 
 
P_Demand = 4500 
A_eq = -[1 1 1] ; B_eq = -P_Demand  
a = []; b = []; 
lb = [1000 ; 100 ; 2000]; ub = [5000 ; 900 ; 3000];  
x0 = [0 ; 0 ; 0]; 
 [Popt_Case2, objfcn_value, exitflag, output_Pagiat akis_Case2, lambda] = 
fmincon 
(@GPag_3Plants_HourlyCosts_objfcn, x0, a, b, A_eq, B_eq,lb,ub,[] );  
 
disp( ' ***** Optimal Values for P1, P2, lambda.eqlin etc ... are... ' ) 
P1_opt = Popt_Case2(1) 
P2_opt = Popt_Case2(2) 
P3_opt = Popt_Case2(3) 
 
disp( ' ***** Output structure is: ' ); output_Pagiatakis_Case2 
disp( ' **** "lambda.eqlin" is Optimal lambda for Linear equalities ' ); 
lambda. 
eqlin 



 

 

 

disp( ' **** "lambda.lower" is Optimal lambda for Lower b ounds "lb" 
inequalities ' ); 
lambda.lower 
disp( ' **** "lambda.upper" is Optimal lambda for Upper b ounds "ub" 
inequalities ' ); 
lambda.upper 
disp( ' **** "lambda.ineqlin" is Optimal lambda for Linea r inequalities ' ); 
lambda. 
ineqlin 
%========== END ============ 

 

Case 3: 

Applied on 1 demand level 

Two Power Plant Example 
 
clear all ; close all ; clc 
disp( ' ==== Case 3 = LOSSES + No Constraints - ' );  
disp( ' P_Demand = Constant ' ) 
P_Demand = 40 
P1_min = 0; P2_min = 0 ; 
P1_max = 300; P2_max = 400 ; 
%==== a , b 
a = []; b = []; 
%==== lb , ub 
disp( ' do NOT take into account the constraints Pmin Pma x' ); lb = []; ub = 
[]; 
disp( ' *** Equality Constraints Aeq, Beq reflect the ins taneous Power 
Balance *** ' ) 
disp( ' P1 + P2 + P3 = P_Demand + P_Loss WITH P_Loss(P1,P 2,P3) = alpha*P1 + 
beta*P2 + 
gamma*P3' ) 
disp( ' hence.... ' ) 
 
alpha = 0.5 
beta = 0.5 
a_eq2 = -[1-alpha 1-beta ] ;  
b_eq2 = -P_Demand ;  
 
%=== Initial Guess 
x0 = [P1_min; P2_min]; 
 
[Popt21a, objfunction_Value2, exitflag2, output2, l ambda2] = 
fmincon(@Exposito51_2Plants_HourlyCosts_objfcn,x0, a, b, a_eq2, b_eq2,lb,ub) 
 
disp( ' ***** Optimal Values for Pa, Pb, lambda.eqlin are ... ' ) 
P1_opt = Popt21a(1) 
P2_opt = Popt21a(2) 
disp( ' ***** Optimal lambda2 = ' ) 
lambda2.eqlin 
disp( ' ***** Optimal Value of OBJ FUNCTION is: ' ) 
objfunction_Value2 

Three Power Plant Example 
 

clear all ; close all ; clc 
disp( ' ==== Case 3 = LOSSES + No Constraints - ' );  
disp( ' P_Demand = Constant ' ) 
 
P_Demand = 4500 
P1_min = 1000; P2_min = 100 ; P3_min = 2000 ; 
P1_max = 5000; P2_max = 900 ; P3_max = 3000 ; 
 
%==== a , b 
a = []; b = []; 
%==== lb , ub 
disp( ' do NOT take into account the constraints Pmin Pma x' ); lb = []; ub = 
[]; 



 

 

 

disp( ' *** Equality Constraints Aeq, Beq reflect the ins taneous Power 
Balance *** ' ) 
disp( ' P1 + P2 + P3 = P_Demand + P_Loss WITH P_Loss(P1,P 2,P3) = alpha*P1 + 
beta*P2 + 
gamma*P3' ) 
disp( ' hence.... ' ) 
 
alpha = 0.5 
beta = 0.5 
gamma = 0 
a_eq2 = -[1-alpha 1-beta 1-gamma] ;  
b_eq2 = -P_Demand ;  
 
%=== Initial Guess 
x0 = [P1_min; P2_min; P3_min]; 
 
[Popt21a, objfunction_Value2, exitflag2, output2, l ambda2] = fmincon 
(@GPag_3Plants_HourlyCosts_objfcn , x0, a, b, a_eq2 , b_eq2,lb,ub) 
 
disp( ' ***** Optimal Values for Pa, Pb, lambda.eqlin are ... ' ) 
P1_opt = Popt21a(1) 
P2_opt = Popt21a(2) 
P3_opt = Popt21a(3) 
disp( ' ***** Optimal lambda2 = ' ) 
lambda2.eqlin 
disp( ' ***** Optimal Value of OBJ FUNCTION is: ' ) 
objfunction_Value2 

  



 

 

 

Applied on multiple demand levels 

Two Power Plant Example 
clear all ; close all ; clc 
disp( ' ==== Case 4 = Linear Transm LOSSES + No Gen Const raints ' ); 
disp( ' P_Demand = Constant ' ) 
P_Demand = 40 
 
%==== a , b 
a = []; b = []; 
%==== lb , ub 
lb = []; ub = []; 
disp( ' Do not take into account the constraints Pmin Pma x' ); 
disp( ' *** Equality Constraints Aeq, Beq reflect the ins taneous Power 
Balance *** ' ) 
disp( ' P1 + P2 = P_Demand + P_Loss WITH P_Loss(P1,P2,) =  alpha*P1 + beta*P2 
' ) 
disp( ' hence.... ' ) 
%-------- alpha initialization -------- 
alpha_final = 0.9 ; 
alpha_init = 0; 
alpha_grid_points = 20 ; 
alphastep = (alpha_final - alpha_init)/alpha_grid_p oints 
alpha_save = zeros(alpha_grid_points,1); 
%-------- beta initialization -------- 
beta_final = 0.9 ; 
beta_init = 0; 
beta_grid_points = 20 ; 
betastep = (beta_final - beta_init)/beta_grid_point s 
beta_save = zeros(beta_grid_points,1); 
 
%----- alpha, i LOOP 
i=1; 
for alpha = alpha_init:alphastep:alpha_final 
alpha_save(i)= alpha ; 
 
i=i+1; 
end 
 
%----- beta, j LOOP 
j=1; 
for beta = beta_init:betastep:beta_final 
beta_save(j) = beta ; 
j=j+1; 
end  
 
for i=1:alpha_grid_points+1  
for j=1:beta_grid_points+1 
A_eq = -[1-alpha_save(i) 1-beta_save(j)] ;  
B_eq = -P_Demand ;  
%=== Initial Guess 
x0 = [ 0 ; 0]; 
 [Popt03a, objfunction_Value03a, exitflag03a, outpu t03a, lambda_03a] = 
fmincon 
(@Exposito51_2Plants_HourlyCosts_objfcn, x0, a, b, A_eq, B_eq, lb,ub,[]) ;  
lambda_eqlin_Vector(j, i) = lambda_03a.eqlin ; 
end 
end 
 
%======== PLOT 
fig=10 
figure(fig); fig=fig+1; 
surf(beta_save, alpha_save, lambda_eqlin_Vector )  
xlabel( '$\alpha$ ' , 'Interpreter' , 'latex' , 'FontName' , 'Times New 
Roman' , 'fontsize' , 
12); 
ylabel( '$\beta$ ' , 'Interpreter' , 'latex' , 'FontName' , 'Times New 
Roman' , 'fontsize' , 
12); 
title( 'Case 3: Langrange Multiplier $\lambda^{*}$ as a fu nction of 
\alpha,~\beta$' , 
'Interpreter' , 'latex' , 'FontName' , 'Times New Roman' , 'fontsize' ,10) 
print -djpeg -r600 GPag_3Plants_LinLossAlphaBeta_lambda_j peg600 



 

 

 

 
Three Power Plant Example 
clear all ; close all ; clc 
disp( ' Case 3 = Linear Transm LOSSES + No Gen Constraint s ' );  
disp( ' P_Demand = Constant ' ) 
P_Demand = 4500 
%==== a , b 
a = []; b = []; 
%==== lb , ub 
lb = []; ub = []; 
disp( 'Do not take the constraints Pmin Pmax into account ' ); 
disp( ' *** Equality Constraints Aeq, Beq reflect the ins taneous Power 
Balance *** ' ) 
disp( ' P1 + P2 + P3 = P_Demand + P_Loss WITH P_Loss(P1,P 2,P3) = alpha*P1 + 
beta*P2 + 
gamma*P3' ) 
disp( ' hence.... ' ) 
gamma = 0 
%-------- alpha initialization -------- 
alpha_final = 1 ; 
alpha_init = 0; 
alpha_grid_points = 20 ; 
alphastep = (alpha_final - alpha_init)/alpha_grid_p oints 
alpha_save = zeros(alpha_grid_points,1); 
%-------- beta initialization -------- 
beta_final = 1 ; 
beta_init = 0; 
beta_grid_points = 20 ; 
betastep = (beta_final - beta_init)/beta_grid_point s 
beta_save = zeros(beta_grid_points,1); 
%----- alpha, i LOOP 
i=1; 
for alpha = alpha_init:alphastep:alpha_final 
alpha_save(i)= alpha ; 
i=i+1; 
end 
%----- beta, j LOOP 
j=1; 
for beta = beta_init:betastep:beta_final 
beta_save(j) = beta ; 
j=j+1; 
end % beta, j LOOP stop 
 
for i=1:alpha_grid_points+1 %alpha = 0:0.1:1 
for j=1:beta_grid_points+1 
A_eq = -[1-alpha_save(i) 1-beta_save(j) 1-gamma] ; % [1-alpha 1-beta 1-
gamma] 
B_eq = -P_Demand ; % P_Demand 
%=== Initial Guess 
x0 = [ 0 ; 0 ; 0 ]; 
 
 
 [Popt03a, objfunction_Value03a, exitflag03a, outpu t03a, lambda_03a] = 
fmincon 
(@GPag_3Plants_HourlyCosts_objfcn , x0, a, b, A_eq,  B_eq, lb,ub,[]) ; 
%,optimset 
lambda_eqlin_Vector(j, i) = lambda_03a.eqlin ; 
end 
end 
%======== PLOT 
fig=10 
figure(fig); fig=fig+1; 
surf(beta_save, alpha_save, lambda_eqlin_Vector ) %plot(alpha_save, 
lambda_eqlin_Vector ) 
xlabel( '$\alpha$ ' , 'Interpreter' , 'latex' , 'FontName' , 'Times New 
Roman' , 'fontsize' , 
12); 
ylabel( '$\beta$ ' , 'Interpreter' , 'latex' , 'FontName' , 'Times New 
Roman' , 'fontsize' , 
12); 
title( 'Case 3: Langrange Multiplier $\lambda^{*}$ as a fu nction of 
$\alpha,~\beta$' , 



 

 

 

'Interpreter' , 'latex' , 'FontName' , 'Times New Roman' , 'fontsize' ,10) 
print -djpeg -r600 GPag_3Plants_LinLossAlphaBeta_lambda_j peg600 

 

Case 4 

Two Power Plant Example 
clear all ; close all ; clc 
disp( ' Case 4 = LOSSES + Generation limits ' ); % PRESS ANY KEY pause 
disp( ' P_Demand = Constant ' ) 
 
P_Demand = 40 
 
P1_min = 0; P2_min = 0 ; 
P1_max = 300; P2_max = 400 ; 
 
%==== a , b 
a = []; b = []; 
%==== lb , ub 
lb = [0 ; 0]; ub = [300 ; 400]; 
 
disp( ' *** Equality Constraints Aeq, Beq reflect the ins taneous Power 
Balance *** ' ) 
disp( ' P1 + P2 + P3 = P_Demand + P_Loss WITH P_Loss(P1,P 2,P3) = alpha*P1 + 
beta*P2 + 
gamma*P3' ) 
 
disp( ' hence.... ' ) 
alpha = 0.5 
beta = 0.5 
 
a_eq2 = -[1-alpha 1-beta ] ; 
b_eq2 = -P_Demand ; 
 
%=== Initial Guess 
x0 = [P1_min; P2_min]; 
 
[Popt21a, objfunction_Value2, exitflag2, output2, l ambda2] = 
fmincon(@Exposito51_2Plants_HourlyCosts_objfcn , x0 ,a,b,a_eq2, b_eq2,lb,ub) 
 
disp( ' ***** Optimal Values for Pa, Pb, lambda.eqlin are ... ' ) 
P1_opt = Popt21a(1) 
P2_opt = Popt21a(2) 
 
disp( ' ***** Optimal lambda2 = ' ) 
lambda2.eqlin 
disp( ' ***** Optimal Value of OBJ FUNCTION is: ' ) 
objfunction_Value2 
 

Three Power Plant Example 
clear all ; close all ; clc 
disp( ' Last Touch = 31Jan2016 ' ) 
disp( ' Case 4 = LOSSES + Generation limits - ' ); 
disp( ' P_Demand = Constant ' ) 
P_Demand = 4500 
P1_min = 1000; P2_min = 100 ; P3_min = 2000 ; 
P1_max = 5000; P2_max = 900 ; P3_max = 3000 ; 
%==== a , b 
a = []; b = []; 
%==== lb , ub 
lb = [1000 ; 100 ; 2000]; ub = [5000 ; 900 ; 3000];  
disp( ' *** Equality Constraints Aeq, Beq reflect the ins taneous Power 
Balance *** ' ) 
disp( ' P1 + P2 + P3 = P_Demand + P_Loss WITH P_Loss(P1,P 2,P3) = alpha*P1 + 
beta*P2 + 
gamma*P3' ) 
disp( ' hence.... ' ) 
alpha = 0.5 
beta = 0.5 
gamma = 0 
a_eq2 = -[1-alpha 1-beta 1-gamma] ; 
b_eq2 = -P_Demand ; 



 

 

 

%=== Initial Guess 
x0 = [P1_min; P2_min; P3_min]; 
%x0 = [ 0 ; 0 ; 0 ]; 
[Popt21a, objfunction_Value2, exitflag2, output2, l ambda2] = fmincon 
(@Exam_A21a_3Thermal_withLosses_objfcn , x0, a, b, a_eq2, b_eq2,lb,ub) 
disp( ' ***** Optimal Values for Pa, Pb, lambda.eqlin are ... ' ) 
P1_opt = Popt21a(1) 
P2_opt = Popt21a(2) 
P3_opt = Popt21a(3) 
disp( ' ***** Optimal lambda2 = ' ) 
lambda2.eqlin 
disp( ' ***** Optimal Value of OBJ FUNCTION is: ' ) 
objfunction_Value2  

 

 
 


