2E1215, Lecture 1 – Matlab Basics

http://www.s3.kth.se/control/kurser/2E1215/

Z

Mikael Johansson and Frank Lingelbach Department of Signals, Sensors and Systems

Based on lectures by F. Gustafsson, Linköping University

What is Matlab?

A software environment for interactive numerical computations

Examples:

- Matrix computations and linear algebra
- Solving nonlinear equations
- Numerical solution of differential equations
- Mathematical optimization
- Statistics and data analysis
- Signal processing
- Modelling of dynamical systems
- Solving partial differential equations
- Simulation of engineering systems

What will you learn in 2E1215?

3

Effective Matlab usage

- Possibilities and limitations
- Syntax and interactive computations
- Matlab programming (using functions and script files)
- Visualization
- Optimization of code for efficient computations

Why should you attend 2E1215?

Matlab used (on a daily basis) in many engineering companies

Why should you attend 2E1215?

Matlab used in many courses at KTH

- 2D1240 Numeriska metoder
- 5B1209 Signaler och system I
- 2E1313 Signaler och system II
- 2E1315 Signaler och system II, D
- 2E1280 Modellering av dynamiska system
- 2E1200 Reglerteknik AK, F,M,T
- 2E1211 Reglerteknik AK, E
- 2E1252 Reglerteknik FK
- 2E1262 Olinjär reglering

- 2E1291 Kemiteknisk processreglering
- 2E1241 Projektkurs i reglerteknik
- 2E1421 Signalteori

. . .

- 2E1340 Digital signalbehandling
- 2E1350 Adaptiv signalbehanling
- 2E1366 Projektkurs i signalbehandling
- 2E1431 Kommunikationsteori
- 2E1435 Kommunikationsteori FK
 - <många, många fler>

Course information

Course contents and literature

6

Course Guide

Matlab Basics

- Background to Matlab
- Interactive calculations
- Vectors and matrices
- Graphical illustrations

Next lecture: Matlab programming

Part I – Course Information

2E1215 – Introduction to Matlab

8

Student Handbook: One (1) credit <u>self study</u> course. Eligible.

Objectives:

- Gain basic knowledge of Matlab programming
- To prepare for other courses where Matlab is used
- To give insight into a state-of-the-art tool for technical computation and visualization

Prerequisites

- Basic knowledge from calculus & linear algebra
- Basic programming skills (helpful, not necessary!)

- Internet and computer experience
- Curiosity!

Course Literature

N. Bergman and F. Gustafsson, "Matlab for Engineers Explained", Springer, 2003

Available via kårbokhandeln

- Teaches practical Matlab usage (not a full manual)
- Basic description of theoretical concepts
- Based on examples with guided tours of the system
- Exercises with solutions
- Applications from engineering courses

Suggested exercises:

1-5, 8-17, 21, 23-32, 34, 37, 40-41, 44, 47-48

Course Guide

http://www.s3.kth.se/control/kurser/2E1215/

11

Schedule Information **Registration Examination**

Course Guide - Registration

Registration is mandatory, both

- At the course webpage (to receive info, exam)
- At your "kansli" (computer account, credits in LADOK)

Take care of this <u>today</u>! (avoids frustration later)

Note: "kansli" = "Study administrative office"

14

Participant A

Participant B

Studies

- Self studies, guided tours
- Supervised computer sessions

E-mail

2E1215@s3.kth.se

- Questions via E-mail
- Examination over WWW

Self studies - Availability

- The KTH CD-rom
- Matlab is installed in most computer labs

On Linux machines at Elektro type module add matlab matlab

Any changes will be posted at course web page

Computer Exercises

You will need account at Elektro

- 1. Register for course (necessary!)
- 2. Contact course administrator Magdalena Lindqvist, Osquldasv. 10, floor 6. (or email <u>madde@s3.kth.se</u>)
- 3. Two days later, the account can be checked out at Elhand, Osquldas v 10, floor 2.
 - bring identity card!

Exam via WWW

Distributed via WWW, executed in Matlab

- 1. Request exam from web-server
- 2. Allows you to download Matlab program that
 - a. Given your personal number, generate problems
 - b. Corrects and marks your code, returns string.
- 3. Submit string to server within 72 hours.
- 4. Grades via email.

Course Guide - Marks within 24h

More about the exam...

Do the exam!

- Most people that try the exam actually pass!
- You have 72 hours
- You can use all course material and the Matlab manuals!

On the exam: four problems drawn from the categories

- 1. Basic matrix manipulations
- 2. Operations on string variables (not covered in lectures)
- 3. Writing functions
- 4. Flow control
- 5. Function functions

Program well – fast programs give higher score!

20

Part II – Matlab Basics

Matlab Background

Matlab = Matrix Laboratory

Originally a user interface for numerical linear algebra routines (Lapak/Linpak)

Commercialized 1984 by The Mathworks

Since then heavily extended (defacto-standard)

Alternatives

Matrix-X Octave (fr Lyme (fr

(free; GNU) (free; Palm)

Complements

Maple († Mathematica (†

(symbolic) (symbolic)

Construction

Core functionality: compiled C-routines Most functionality is given as m-files, grouped into toolboxes

- m-files contain source code, can be copied and altered
- m-files are platform independent (PC, Unix/Linux, MAC)

Simulation of dynamical systems is performed in Simulink

Interactive Calculations

Matlab is interactive, no need to declare variables >> 2+3*4/2 >> a=5e-3; b=1; a+b

Most elementary functions and constants are already defined
>> cos(pi)
>> abs(1+i)
>> sin(pi)

Last call gives answer 1.2246e-016 !?

Floating point numbers in Matlab

IEEE Standard for double precision numbers

Round-off:eps = 2^{-52} Underflow:realmin = 2^{-1022} Overflow:realmax = $(2\text{-eps}) \cdot 2^{1023}$

Interactive Calculations

Matlab uses double precision (approx. 16 significant digits)
>> format long
>> format compact

All variables are shown with >> who >> whos

Variables can be stored on file
>> save filename
>> clear
>> load filename

Interactive Calculations

Search for appropriate function
>> lookfor keyword

Rapid help with syntax and function definition >> help *function*

An advanced hyperlinked help system is launched by >> helpdesk

Complete manuals as PDF files

Vectors and Matrices

Vectors (arrays) are defined as
>> v = [1, 2, 4, 5]
>> w = [1; 2; 4; 5]

$$v = \begin{bmatrix} 1 & 2 & 4 & 5 \end{bmatrix}$$
$$w = \begin{bmatrix} 1 \\ 2 \\ 4 \\ 5 \end{bmatrix}$$

Matrices (2D arrays) defined similarly >> A = [1,2,3;4,-5,6;5,-6,7]

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & -5 & 6 \\ 5 & -6 & 7 \end{bmatrix}$$

Matrix operators

All common operators are overloaded >> v + 2

Common operators are available

- >> B = A'
- >> A*B
- >> A+B

Note:

- Matlab is case-sensitive
 - A and a are two different variables
- Transponate conjugates complex entries; avoided by
 >> B=A.'

Indexing Matrices

Indexing using parentheses
>> A(2,3)

Index submatrices using vectors
of row and column indices
>> A([2 3],[1 2])

Ordering of indices is important!
>> B=A([3 2],[2 1])
>> B=[A(3,2),A(3,1);A(2,2);A(2,1)]

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & -5 & 6 \\ 5 & 6 & 7 \end{bmatrix}$$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & -5 & 6 \\ 5 & 6 & 7 \end{bmatrix}$$

$$B = \begin{bmatrix} 6 & 5 \\ -5 & 4 \end{bmatrix}$$

Indexing Matrices

Index complete row or column using
the colon operator
>> A(1,:)

Can also add limit index range
>> A(1:2,:)
>> A([1 2],:)

General notation for colon operator >> v=1:5 >> w=1:2:5 $A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & -5 & 6 \\ 5 & 6 & 7 \end{bmatrix}$

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & -5 & 6 \\ 5 & 6 & 7 \end{bmatrix}$$

$$v = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \end{bmatrix}$$
$$w = \begin{bmatrix} 1 & 3 & 5 \end{bmatrix}$$

Matrix functions

Many elementary matrices predefined
>> help elmat;
>> I=eye(3)

Elementary functions are often overloaded
>> help elmat
>> sin(A)

Specialized matrix functions and operators
>> As=sqrtm(A)

>> As^2

>> A.*A

Note: in general, ".<operator>" is elementwise operation

Numerical Linear Algebra

Basic numerical linear algebra
>> z=[1;2;3]; x=inv(A)*z
>> x=A\z

$$Ax = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$$
$$x = A^{-1} \begin{bmatrix} 1\\2\\3 \end{bmatrix}$$

Many standard functions predefined
>> det(A)
>> rank(A)
>> eig(A)

The number of input/output arguments can often be varied >> [V,D]=eig(A)

Graphics

Visualization of vector data is available
>> x=-pi:0.1:pi; y=sin(x);
>> plot(x,y)
>> plot(x,y,'s-')
>> xlabel('x'); ylabel('y=sin(x)');

Can change plot properties in Figure menu, or via "handle"
>> h=plot(x,y); set(h, 'LineWidth', 4);

Many other plot functions available
>> v=1:4; pie(v)

Intro

Introduction to Matlab

Graphics

Three-dimensional graphics
>> A = zeros(32);
>> A(14:16,14:16) = ones(3);
>> F=abs(fft2(A));
>> mesh(F)
>> rotate3d on

Several other plot functions available
>> surfl(F)

Can change lightning and material properties >> cameramenu >> material metal

Graphics

Bitmap images can also be visualized
>> load mandrill
>> image(X); colormap(map)
>> axis image off

Next Lecture

Programming in MATLAB

