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Ηλεκτροτεχνία 

Α. Θεμελιώδη Ηλεκτρικά Μεγέθη 

Α.1 Ηλεκτρικό Ρεύμα (ΗΡ) 

Ηλεκτρικό ρεύμα (ΗΡ) ορίζεται η προσανατολισμένη κίνηση ηλεκτρικών φορτίων κατά 

μήκος ενός ηλεκτροφόρου αγωγού. Το ΗΡ διακρίνεται σε: 

 Συνεχές ΗΡ 

Ως συνεχές ΗΡ χαρακτηρίζεται το ΗΡ που κινείται πάντα κατά την ίδια φορά και η 

ταχύτητα ροής των ηλεκτρικών φορτίων είναι σταθερή. 

 Μεταβαλλόμενο ΗΡ 

Ως μεταβαλλόμενο ΗΡ χαρακτηρίζεται το ΗΡ που 

 Είτε δεν κινείται προς την ίδια κατεύθυνση. 

 Είτε η ταχύτητα ροής των ηλεκτρικών φορτίων δεν παραμένει σταθερή. 

 Είτε συμβαίνουν συγχρόνως και τα δύο. 

Σημαντική μορφή μεταβαλλόμενου ΗΡ είναι το εναλλασσόμενο ΗΡ όπου η φορά 

του ρεύματος μεταβάλλεται περιοδικά. 

Ένταση I  ΗΡ (Μονάδα: Ampere, A): Είναι ο ρυθμός διέλευσης του ρεύματος από μια 

εγκάρσια διατομή του ηλεκτροφόρου αγωγού. Δηλαδή: 

 
dQ

I
dt

  (1) 

όπου Q  είναι το φορτίο που περνάει από την αντίσταση. 

Α.2 Ηλεκτρική Τάση  

Ηλεκτρική τάση (ή διαφορά δυναμικού) V  μεταξύ δύο σημείων ορίζεται η διαφορά 

ενέργειας ενός μοναδιαίου φορτίου που βρίσκεται σε κάθε ένα από αυτά τα σημεία. Η 

τάση περιγράφεται από μία τιμή εκφρασμένη σε Volt (V) και μια σύμβαση πολικότητας 

κατά την οποία το ένα σημείο θεωρείται υψηλού δυναμικού (+) και το άλλο χαμηλού 

δυναμικού (-). 

Η διαφορά ενέργειας είναι το έργο που πρέπει να δαπανηθεί ώστε το μοναδιαίο 

θετικό φορτίο να μετακινηθεί από  ένα σημείο χαμηλού δυναμικού (-) σε άλλο υψηλού 

δυναμικού (+). 

Πολλές φορές εκλέγουμε ένα σημείο αναφοράς στο οποίο δίνουμε την τιμή μηδέν. 

Η γείωση ενός κυκλώματος, δηλαδή ένα σημείο σε επαφή με τη γη, προσφέρεται να 

οριστεί με μηδενικό δυναμικό λόγω του μεγέθους της γης. 
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Α.3 Ηλεκτρική Ισχύς και Ενέργεια  

Ηλεκτρική ισχύς P , είναι ο ρυθμός με τον οποίο συσσωρεύεται, αποδίδεται ή 

καταναλίσκεται η ηλεκτρική ενέργεια και δίνεται από την σχέση: 

 P V I  (2) 

Δηλαδή, η ισχύς είναι ίση με το γινόμενο της τάσης μεταξύ δυο ακροδεκτών ενός 

στοιχείου επί το ρεύμα που το διαρρέει. 

Η ισχύς που ένα στοιχείο απορροφά από το περιβάλλον θεωρείται θετική 

ποσότητα, ενώ ισχύς που ένα στοιχείο αποδίδει στο περιβάλλον θεωρείται αρνητική 

ποσότητα. 

Μονάδα μέτρησης της ισχύος είναι το Watt, W (1 W= 1 A V). 

Η μεταφερόμενη ηλεκτρική ενέργεια δίνεται από: 

 
2

1

t

t

w Pdt  (3) 

Μονάδα μέτρησης της ηλεκτρικής ενέργειας είναι το Joule, J. 

Α.4 Νόμοι Kirchhoff  

Πριν τη διατύπωση των νόμων του Kirchhoff, κρίνεται σκόπιμο να οριστούν οι παρακάτω 

έννοιες από την τοπολογία ενός κυκλώματος: 

 Κλάδος 

Κλάδος ενός κυκλώματος είναι το στοιχείο του κυκλώματος που έχει δυο 

ακροδέκτες. 

 Κόμβος 

Κόμβος ενός κυκλώματος είναι ο κοινός ακροδέκτης δύο ή περισσότερων κλάδων. 

 Βρόχος 

Ο βρόχος ενός κυκλώματος αποτελείται από μια κλειστή διαδρομή που ξεκινάει 

από έναν αρχικό κόμβο και καταλήγει στον ίδιο, περνώντας από τους άλλους μόνο 

μια φορά. 

Διατύπωση νόμων Kirchhoff: 

 Νόμος Ρευμάτων Kirchhoff 

Το αλγεβρικό άθροισμα των ρευμάτων που φθάνουν σε έναν κόμβο είναι μηδέν. 

Δηλαδή: 

 
1

0
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I


  (4) 
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Τα ρεύματα που κατευθύνονται προς τον κόμβο θεωρούνται θετικά (+) ενώ αυτά που 

απομακρύνονται από αυτόν θεωρούνται αρνητικά (-). 

 Νόμος Τάσεων Kirchhoff 

Το αλγεβρικό άθροισμα των τάσεων κατά μήκος  ενός βρόχου είναι μηδέν. 

Δηλαδή: 

 
1

0
N

k

i

V


  (5) 

Παράδειγμα 1 

Για το κύκλωμα του Σχήματος 1 να βρεθούν τα ρεύματα που το διαρρέουν. 

 

Σχήμα 1.  

1) Αρχικά ορίζουμε αυθαίρετα την φορά των ρευμάτων στους κλάδους του 

κυκλώματος. Η πραγματική φορά θα προκύψει από την επίλυση του 

προβλήματος. Δηλαδή, αν προκύψει θετική τιμή για το ρεύμα τότε η φορά του είναι 

αυτή που θεωρήσαμε αρχικά. Αν προκύψει αρνητική τιμή ρεύματος, τότε η φορά 

αυτού του ρεύματος είναι αντίθετη από αυτή που θεωρήθηκε αρχικά.   

2) Για την εφαρμογή του ΝΤΚ, θεωρούμε αυθαίρετα μια θετική φορά κατεύθυνσης 

από σημείο σε σημείο (συνήθως ωρολογιακή, όπως φαίνεται στο σχήμα). 

3) Κατά τη εφαρμογή του ΝΤΚ κατά την φορά που επιλέχθηκε, όταν συναντάμε σε 

ένα στοιχείο (πηγή τάσης ή αντίσταση) με πολικότητα όπου πρώτα είναι το θετικό 

δυναμικό και μετά το αρνητικό, η τάση του στοιχείου έχει αρνητικό πρόσημο. Σε 

αντίθετη περίπτωση έχει θετικό πρόσημο στον ΝΤΚ. 
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4) Η πολικότητα μια αντίστασης ορίζεται έτσι ώστε το ρεύμα όταν εισέρχεται στην 

αντίσταση να συναντά πρώτα θετικό δυναμικό (βλ. σχήμα). 

Εφαρμογή ΝΡΚ στον κόμβο Γ: 

 1 2 3 0I I I    (6) 

ή 

 1 2 3I I I   (7) 

Εφαρμογή ΝΤΚ στον βρόχο 1 (ΑΒΓΔΑ): 

 1 1 1 2 2 1 4V E I R I R I R V       (8) 

ή 

 1 1 4 2 2 1( )I R R I R E    (9) 

Εφαρμογή ΝΤΚ στον βρόχο 2 (ΔΓΕΖΔ): 

 2 2 3 3 2V I R I R E V      (10) 

ή 

 2 2 3 3 2I R I R E   (11) 

Παράδειγμα 2 

Για το κύκλωμα του Σχήματος 2 να βρεθούν τα ρεύματα που το διαρρέουν. 

 

Σχήμα 2.  

Εφαρμογή ΝΡΚ στον κόμβο Γ: 

 1 2 3 0I I I    (12) 

ή 
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 1 2 3I I I   (13) 

Εφαρμογή ΝΤΚ στον βρόχο 1 (ΑΒΓΔΑ): 

 1 1 2 2sV E I R I R V      (14) 

ή 

 1 1 2 2 sI R I R E   (15) 

Εφαρμογή ΝΤΚ στον βρόχο 2 (ΔΓΕΖΔ): 

 2 2 3 3 3 4V I R I R I R V      (16) 

ή 

 2 2 3 3 4( )I R I R R   (17) 

Αντικαθιστούμε το 1I  στην Εξ. (15), χρησιμοποιώντας την Εξ. (13): 

 2 3 1 2 2( ) sI I R I R E    (18) 

ή 

 1 2 2 3 1( ) sR R I I R E    (19) 

ή 

 
1 2 2

3

1

( )sE R R I
I

R

 
  (20) 

Από τις Εξ. (17) και (20) προκύπτει: 

 
1 2 2

2 2 3 4

1

( )
( )

sE R R I
I R R R

R

 
   (21) 

ή 

 2 2 1 3 4 1 2 3 4 2( ) ( )( )sI R R E R R R R R R I      (22) 

ή 

 2 2 1 1 2 3 4 3 4[ ( )( )] ( )sI R R R R R R E R R      (23) 

Τελικά: 

 
3 4

2

2 1 1 2 3 4

( )

( )( )

sE R R
I

R R R R R R




  
 (24) 

Από την Εξ. (17) έχουμε: 

 
2

3 2

3 4

R
I I

R R



 (25) 

Από τις Εξ. (24) και (25) προκύπτει: 
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2 3 4

3

3 4 2 1 1 2 3 4

( )

( )( )

sR E R R
I

R R R R R R R R




   
 (26) 

ή 

 
2

3

2 1 1 2 3 4( )( )

sE R
I

R R R R R R


  
 (27) 

Τέλος, από τις Εξ. (13), (24) και (27) έχουμε: 

 
3 4 2

2 1 1 2 3 4 2 1 1 2 3 4

( )

( )( ) ( )( )

s sE R R E R
I

R R R R R R R R R R R R


 

     
 (28) 

ή 

 
2 3 4

2 1 1 2 3 4

( )

( )( )

sE R R R
I

R R R R R R

 


  
 (29) 
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Β. Θεμελιώδη Ηλεκτρικά Στοιχεία 

Β.1 Αντιστάτες 

Β.1.1 Αντίσταση και Αγωγιμότητα 

Η ιδιότητα των υλικών να εμποδίζουν τη διέλευση φορτίων διά μέσου του καλείται 

αντίσταση, ενώ η (αντίστροφη) ιδιότητα να επιτρέπουν τη διέλευση φορτίων καλείται 

αγωγιμότητα. Οι αντιστάτες χρησιμοποιούνται για τον περιορισμό της ροής ηλεκτρικού 

ρεύματος μέσα σε ένα κύκλωμα και στην κατασκευή διαιρετών τάσης (βλ. επόμενη 

παράγραφο). 

Για έναν αγωγό μήκους l , εγκάρσιας διατομής S , η αντίσταση του δίνεται από: 

 
l

R
S

  (30) 

όπου   είναι η ειδική αντίσταση του αγωγού. 

Μονάδα μέτρησης της αντίστασης είναι το ohm (Ω). 

Αγωγιμότητα G  ορίζεται το αντίστροφο της αντίστασης R . Δηλαδή, 

 
1

G
R

  (31) 

Μονάδα μέτρησης της αγωγιμότητας είναι το Siemens (ή mho ή 1 ). 

Νόμος του Ohm: Το ρεύμα I  που διαρρέει μια αντίσταση R  όταν η τάση στους 

ακροδέκτες της είναι V , δίνεται από: 

 
V

I
R

  (32) 

 

Σχήμα 3. 

Αντιστάσεις και Ισχύς: Οι αντιστάσεις απορροφούν ισχύ ή ενέργεια. Η ισχύς που 

απορροφάται από μια αντίσταση, δίνεται από: 

 
2

2
V

P V I I R
R

    (33) 
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Β.1.2 Συνδεσμολογία Αντιστάσεων 

 Συνδεσμολογία N αντιστάσεων σε σειρά 

Η συνδεσμολογία των αντιστάσεων στην περίπτωση αυτή παρουσιάζεται στο παρακάτω 

σχήμα:  

 

Σχήμα 4.  

Το ισοδύναμο κύκλωμα δίνεται στο παρακάτω σχήμα: 

 

Σχήμα 5.  

Η ισοδύναμη αντίσταση R  στην περίπτωση αυτή δίνεται από: 

 1 2 NR R R R      (34) 

 Συνδεσμολογία N αντιστάσεων παράλληλα 

Η συνδεσμολογία των αντιστάσεων στην περίπτωση αυτή παρουσιάζεται στο παρακάτω 

σχήμα: 
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Σχήμα 6.  

Το ισοδύναμο κύκλωμα δίνεται στο παρακάτω σχήμα: 

 

Σχήμα 7.  

Η ισοδύναμη αντίσταση R  στην περίπτωση αυτή δίνεται από: 

 
2 2

1 1 1 1

NR R R R

     (35) 

ή 

 2 2 NG G G G      (36) 

όπου iG  είναι η αγωγιμότητα του στοιχείου i. 

Β.1.3 Διαίρεση Τάση και Διαίρεση Ρεύματος 

 Διαίρεση Τάσης 

Η τάση στην αντίσταση iR  στην περίπτωση αυτή δίνεται από: 
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Σχήμα 8.  

Η τάση στην αντίσταση iR  στην περίπτωση αυτή δίνεται από: 

 
1 2

i

i
R

N

R
V E

R R R


  
 (37) 

 Διαίρεση Ρεύματος 

 

Σχήμα 9.  

Η ένταση του ρεύματος στην αντίσταση iR  στην περίπτωση αυτή δίνεται από: 

 
1 2

i

i
R

N

G
I I

G G G


  
 (38) 

όπου iG  είναι η αγωγιμότητα του στοιχείου i. 

Β.2 Ηλεκτρικές Πηγές 

 Ηλεκτρικά στοιχεία: Χημική ενέργεια σε ηλεκτρική ενέργεια. 

 Ηλεκτρικές γεννήτριες: Μηχανική ενέργεια σε ηλεκτρική ενέργεια. 

 Φωτοβολταϊκά στοιχεία: Ηλιακή ακτινοβολία σε ηλεκτρική ενέργεια. 

Κατηγορίες Πηγών: 

 Πηγές τάσης. 

Σταθερή διαφορά δυναμικού στα άκρα της. Το ρεύμα αλλάξει ανάλογα με το 

φορτίο που συνδέεται στο κύκλωμα. Η ιδανική πηγή τάσης φαίνεται στο Σχήμα 10. 

Η μη-ιδανική πηγή τάσης συνδέεται σε σειρά με μια αντίσταση, όπως φαίνεται στο 

Σχήμα 11. 



ΚΩΣΤΑΣ ΝΑΝΟΣ – ΣΗΜΕΙΩΣΕΙΣ ΗΛΕΚΤΡΟΤΕΧΝΙΑΣ   ΜΕΡΟΣ Ι 

 11 

 

Σχήμα 10. 

 

Σχήμα 11. 

 Πηγές ρεύματος. 

Παρέχει στο κύκλωμα ρεύμα σταθερής έντασης. Η διαφορά δυναμικού στα άκρα 

της εξαρτάται από το φορτίο στο κύκλωμα. ιδανική πηγή ρεύματος φαίνεται στο 

Σχήμα 12. Η μη-ιδανική πηγή ρεύματος συνδέεται παράλληλα με μια αντίσταση, 

όπως φαίνεται στο Σχήμα 13. 

 

Σχήμα 12. 
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Σχήμα 13. 

Β.2.1 Μετατροπή πηγής τάσης σε πηγή ρεύματος 

Μια πηγή τάσης μπορεί να μετατραπεί σε πηγή ρεύματος, όπως φαίνεται στο παρακάτω 

σχήμα. 

 

Σχήμα 14. 

Στην περίπτωση αυτή η ίδια αντίσταση της πηγής τάσης sR  συνδέεται παράλληλα στην 

πηγή ρεύματος ενώ η ένταση sI  της ισοδύναμη πηγής ρεύματος δίνεται από: 

 
s

s

s

E
I

R
  (39) 

Απόδειξη: 

Έστω οι δυο μη-ιδανικές πηγές ρεύματος και τάσεις του παρακάτω σχήματος που 

συνδέονται με μια αντίσταση φορτίου LR . 
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Σχήμα 15. 

Για να είναι ισοδύναμες οι δυο αυτές πηγές, θα πρέπει να προκαλούν ίδιο ρεύμα και ίδια 

τάση πάνω στην αντίσταση φορτίου LR . Δηλαδή: 

 *
L LI I  (40) 

και 

 *
L LV V  (41) 

Για το κύκλωμα που περιέχει την πηγή ρεύματος, το ρεύμα που διαρρέει αντίσταση 

φορτίου LR  δίνεται από (διαίρεση ρεύματος): 

 
L

L s

s L

G
I I

G G



 (42) 

όπου: 

 
1

L

L

G
R

  (43) 

και 

 
1

s

s

G
R

  (44) 

Οπότε η Εξ. (42) γράφεται: 

 

1

1 1
L

L s

s L

R
I I

R R





 (45) 

ή 

 

1

L
L s

L s

s L

R
I I

R R

R R




 (46) 

Τελικά: 
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s

L s

L s

R
I I

R R



 (47) 

Για το κύκλωμα που περιέχει την πηγή τάσης, το ρεύμα που διαρρέει αντίσταση φορτίου 

LR  δίνεται από (ΝΤΚ): 

 *
s

L

s L

E
I

R R



 (48) 

Οπότε η Εξ. (40), λόγω των Εξ. (47) και (48) γίνεται: 

 
s s

s

L s s L

R E
I

R R R R


 
 (49) 

ή 

 
s

s

s

E
I

R
  (50) 

Β.2.2 Μετατροπή πηγής ρεύματος σε πηγή τάσης 

Μια πηγή ρεύματος μπορεί να μετατραπεί σε πηγή τάσης, όπως φαίνεται στο παρακάτω 

σχήμα. 

 

Σχήμα 16. 

Στην περίπτωση αυτή η ίδια αντίσταση sR  της πηγής ρεύματος συνδέεται σε σειρά στην 

πηγή τάσης ενώ η τάση sE  της ισοδύναμη πηγής τάσης δίνεται από: 

 s s sE I R  (51) 

Β.1.4 Παραδείγματα 

Παράδειγμα 1 

Για το κύκλωμα του Σχήματος 2 να βρεθούν: 

i) Η ισοδύναμη αντίσταση του κυκλώματος 
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ii) Η ένταση του ολικού ρεύματος 

 

Σχήμα 17.  

i) Υπολογισμός ισοδύναμης αντίστασης  

Οι αντιστάσεις 1R  και 2R  συνδέονται παράλληλα. Οπότε:  

 
1 2

12

1 2

R R
R

R R



 (52) 

Οι αντιστάσεις 3R  και 4R  συνδέονται παράλληλα. Οπότε:  

 
3 4

34

3 4

R R
R

R R



 (53) 

Το ισοδύναμο κύκλωμα φαίνεται στο παρακάτω σχήμα: 

 

Σχήμα 18.  

Οι αντιστάσεις 12R  και 6R  συνδέονται σε σειρά. Οπότε:  

 126 12 6R R R   (54) 

Οι αντιστάσεις 34R  και 5R  συνδέονται σε σειρά. Οπότε:  

 345 34 5R R R   (55) 

Το ισοδύναμο κύκλωμα φαίνεται στο παρακάτω σχήμα: 
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Σχήμα 19.  

Οι αντιστάσεις 126R  και 345R  συνδέονται παράλληλα. Οπότε:  

 
126 345

'

126 345

R R
R

R R



 (56) 

Το ισοδύναμο κύκλωμα φαίνεται στο παρακάτω σχήμα: 

 

Σχήμα 20.  

Οι αντιστάσεις 'R  και 0R  συνδέονται σε σειρά. Οπότε: 

 '
0R R R    (57) 

 

Σχήμα 21. 
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ii) Υπολογισμός ολικού ρεύματος 

Το ολικό ρεύμα I  δίνεται από: 

 
E

I
R

  (58) 

Παράδειγμα 2 

Για το κύκλωμα του Σχήματος 22 να βρεθεί η διαφορά δυναμικού μεταξύ των σημείων Α 

και Β. 

 

Σχήμα 22.  

α) Υπολογισμός ισοδύναμης αντίστασης: 

Οι αντιστάσεις 1R  και 2R  συνδέονται σε σειρά. Οπότε: 

 12 1 2R R R   (59) 

Οι αντιστάσεις 3R  και 4R  συνδέονται σε σειρά. Οπότε: 

 34 3 4R R R   (60) 

Οι αντιστάσεις 12R  και 34R  συνδέονται παράλληλα. Οπότε: 

 
12 34 1 2 3 4

12 34 1 2 3 4

( ) ( )R R R R R R
R

R R R R R R


 
 

   
 (61) 

β) Υπολογισμός του ολικού ρεύματος I : 

 
E

I
R

  (62) 

ή 

 
1 2 3 4

1 2 3 4( ) ( )

R R R R
I E

R R R R

  


 
 (63) 

γ) Υπολογισμός των ρευμάτων 1I  και 2I : 
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Έχουμε διαιρέτη ρεύματος. Άρα: 

 
12

1

12 34

G
I I

G G



 (64) 

και 

 
34

2

12 34

G
I I

G G



 (65) 

όπου: 

 12

12 1 2

1 1
G

R R R
 


 (66) 

και 

 34

34 3 4

1 1
G

R R R
 


 (67) 

δ) Υπολογισμός της διαφοράς δυναμικού V : 

Ισχύει: 

 1 2 2 4V I R I R V     (68) 

Άρα: 

 1 2 2 4V V V I R I R       (69) 
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Γ. Ανάλυση Κυκλωμάτων 

Γ.1 Μέθοδος Βρόχων 

 Βασίζεται στον Νόμο Τάσεων Kirchhoff. 

 Εφαρμόζεται στους απλούς βρόχους του κυκλώματος. 

 Εύρεση των κύριων ρευμάτων του κυκλώματος. 

Κύριο ρεύμα του βρόχου i ονομάζεται ρεύμα που διαρρέει κλάδο του βρόχου ο 

οποίος ανήκει αποκλειστικά στο βρόχο i. 

Γ.1.1 Διαδικασία Προσδιορισμού Ρευμάτων 

Έστω το παρακάτω κύκλωμα: 

 

Σχήμα 23.  

Δύο απλοί βρόχοι: 

 Ο βρόχος ΑΒΓΔΑ (βρόχος 1) 

 Ο βρόχος ΓΖΕΔΖ (βρόχος 2) 

Δύο κύρια ρεύματα: 

 Το ρεύμα 1I  που διαρρέει αποκλειστικά το βρόχο 1   

 Το ρεύμα 2I  που διαρρέει αποκλειστικά το βρόχο 2 

Το ρεύμα sI  αποτελεί κοινό ρεύμα (και όχι κύριο) αφού διαρρέει τον κλάδο ΓΔ που 

είναι κοινός κλάδος των βρόχων 1 και 2.  

Νόμος τάσεων Kirchhoff στο βρόχο ΑΒΓΔΑ: 
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 1 2 2 1 1A s AV E I R E I R V      (70) 

ή  

 2 1 1 1 2sI R I R E E    (71) 

Νόμος ρευμάτων Kirchhoff στον κόμβο Γ, για να εκφράσουμε το ρεύμα sI  συναρτήσει των 

κύριων ρευμάτων 1I  και 2I : 

 1 2 sI I I   (72) 

ή 

 1 2sI I I   (73) 

Νόμος τάσεων Kirchhoff στο βρόχο ΓΖΕΔΖ: 

 2 2 2 3sV E I R I R V      (74) 

ή  

 2 3 2 2sI R I R E   (75) 

Από τις Εξ. (71) και (73) έχουμε: 

 1 2 2 1 1 1 2( )I I R I R E E     (76) 

Ύστερα από κάποιες πράξεις προκύπτει: 

 

 1 1 2 2 2 1 2( )I R R I R E E     (77) 

Από τις Εξ. (75) και (73) έχουμε: 

 2 3 1 2 2 2( )I R I I R E    (78) 

Ύστερα από κάποιες πράξεις προκύπτει: 

 1 2 2 2 3 2( )I R I R R E     (79) 

Γράφουμε τις Εξ. (77) και (79) σε μορφή πινάκων. Δηλαδή: 

 
1 2 2 1 1 2

2 2 3 2 2

R R R I E E

R R R I E

       
    

     
 (80) 

Γενικά: 

 

1

2

11 12 1 1

21 22 2 2

1 2 N

BN

BN

BN N NN N

ER R R I

ER R R I

ER R R I

     
   

 
   
   
   

     

 (81) 
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όπου 

 Οι αντιστάσεις iiR  ονομάζονται αυτό-αντιστάσεις και είναι ίσες με το άθροισμα των 

αντιστάσεων που αποτελούν το βρόχο i. 

Για το παραπάνω κύκλωμα:  

Άθροισμα αντιστάσεων στο βρόχο 1: 11 1 2R R R   

Άθροισμα αντιστάσεων στο βρόχο 2: 22 2 3R R R   

 Οι αντιστάσεις ijR  ονομάζονται κοινές αντιστάσεις και είναι ίσες με το άθροισμα 

των αντιστάσεων που ανήκουν σε κλάδο που είναι κοινός των βρόχων i και j. 

Για το παραπάνω κύκλωμα:  

Άθροισμα αντιστάσεων στον κοινό κλάδο των βρόχων 1 και 2 (κλάδος ΑΒ): 

12 21 2R R R   

 Οι τάσεις 
1BE  είναι ίσες με το αλγεβρικό άθροισμα των τάσεων πηγών που 

ανήκουν στο βρόχο i.  

Για το παραπάνω κύκλωμα:  

Αλγεβρικό άθροισμα τάσεων πηγών στο βρόχο 1: 
1 1 2BE E E   

Αλγεβρικό άθροισμα τάσεων πηγών στο βρόχο 2: 
2 2BE E  

Γ.1.2 Επίλυση Συστήματος (Μέθοδος Cramer) 

Για την επίλυση του συστήματος που δίνεται από την Εξ. (80), δηλαδή την εύρεση των 

ρευμάτων 1I  και 2I , ορίζουμε τις παρακάτω ορίζουσες: 

 
1 2 2

0

2 2 3

R R R
D

R R R

 


 
 (82) 

 
1 2 2

1

2 2 3

E E R
D

E R R

  



 (83) 

 
1 2 1 2

2

2 2

R R E E
D

R E

  



 (84) 

Η λύση στην περίπτωση αυτή είναι: 

 
1

1

0

D
I

D
  (85) 

 
2

2

0

D
I

D
  (86) 

Παρατήρηση: 
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Η ορίζουσα 1D  προκύπτει από την ορίζουσα 0D  αντικαθιστώντας τα στοιχεία της 1ης 

στήλης με τα στοιχεία του διανύσματος που βρίσκεται στο δεξιό μέλος της Εξ. (80), ενώ η 

ορίζουσα 2D  προκύπτει από την ορίζουσα 0D  αντικαθιστώντας τα στοιχεία της 2ης στήλης 

με τα στοιχεία του διανύσματος που βρίσκεται στο δεξιό μέλος της Εξ. (80). 

Εφαρμογή: 

Έστω ότι: 

1 2 1 2 314 , 10 , 4 , 6 , 2E V E V R R R         

Τότε, 

 0

10 6
10 8 ( 6) ( 6) 44

6 8
D


       


  

 1

24 6
( 24) 8 10 ( 6) 132

10 8
D

 
          

2

10 24
1010 ( 6) ( 24) 44

6 10
D


       


 

 

Άρα, 

1

132
3

44
I A A


   

Δηλαδή το ρεύμα 1I  έχει αντίθετη φορά από αυτή που έχει σχεδιαστεί στο Σχήμα 1. 

Επίσης, 

2

44
1

44
I A A


   

Δηλαδή το ρεύμα 2I  έχει αντίθετη φορά από αυτή που έχει σχεδιαστεί στο Σχήμα 1.  

Επίσης, 

1 2sI I I   

ή 

3 ( 1 ) 2sI A A A     

Ομοίως, το ρεύμα sI  έχει αντίθετη φορά από αυτή που έχει σχεδιαστεί στο Σχήμα 1. 

 

Επιπλέον ερώτημα: Να υπολογιστεί η διαφορά δυναμικού V . 
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Ισχύει: 

2 2sV I R E V     

Ισχύει: 

2 2sV V V E I R       

Με αντικατάσταση των τιμών, έχουμε: 

10 ( 2 ) 6 10 12 2V V A V V V        

Παράδειγμα 

Για το κύκλωμα του Σχήματος 24 να βρεθούν τα ρεύματα που το διαρρέουν.  

 

Σχήμα 24.  

Για να εφαρμόσουμε την μέθοδο των βρόχων, αρχικά μετατρέπουμε την πηγή ρεύματος 

σε ισοδύναμη πηγή τάσης. Στην περίπτωση αυτή προκύπτει το ισοδύναμο κύκλωμα του 

Σχήματος 25. 

 

Σχήμα 25.  
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Η τάση της ισοδύναμης πηγής ρεύματος είναι: 

0s sE I R  

Στο Σχήμα 3 έχουν σχεδιαστεί και οι 3 απλοί βρόχοι (1, 2 και 3) και τα αντίστοιχα κύρια 

ρεύματα 1I , 2I  και 3I  που τους διαρρέουν. 

Είναι: 

 

1

2

3

11 12 13 1

21 22 23 2

32 32 33 3

B

B

B

R R R I E

R R R I E

R R R I E

     
    
  
    
         

 (87) 

όπου: 

 

11 0 1 4

22 1 2 5

33 3 4 5

R R R R

R R R R

R R R R

  

  

  

 (88) 

και 

 

12 21 1

13 31 4

23 32 5

R R R

R R R

R R R

 

 

 

 (89) 

και 

 

1

2

3

0

0

B s

B

B

E E

E

E







 (90) 

Εφαρμογή: 

Έστω ότι: 

0 1 2 3 4 53 , 6 , 2 , 4sI A R R R R R R           

Τότε, 

0 3 6 18s s sE I R E A V      

και 

1

2

3

12 2 4 18

2 8 4 0

0 4 12 0

I

I

I

     
    
  
    
        

 

Τα ρεύματα δίνονται από: 
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1 2 3
1 2 3

0 0 0

, ,
D D D

I I I
D D D

    

όπου: 

0

12 2 4
8 4 2 4 2 4

2 8 4 12 ( 2) 0
4 12 4 12 8 4

0 4 12

12(8 12 ( 4)( 4)) 2( 212 ( 4) ( 4))

960 40 920

D

 
   

     
  



           

  

 

και 

1

18 2 4
8 4 2 4 2 4

0 8 4 18 0 0 18(8 12 ( 4)( 4)) 1440
4 12 4 12 8 4

0 4 12

D

 
    

          
  



 

και 

2

12 18 4
2 4 12 4 12 4

2 0 4 18 0 0 18( 2 12 0( 4)) 432
0 12 0 12 2 4

0 0 12

D


   

          
 

 

και 

3

12 2 18
2 8 12 2 12 2

2 8 0 18 0 0 18(( 2) ( 4) 0 8) 144
0 4 0 4 2 8

0 4 0

D


  

          
  



 

Άρα, τα κύρια ρεύματα είναι: 

1

1140
1.24

920
I A   

και 

2

432
0.47

920
I A


   

και 

3

144
0.16

920
I A   

Για τα υπόλοιπα ρεύματα ισχύουν: 

1 11 2 1 20s sI I I I I I       
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και 

2 22 3 3 20s sI I I I I I       

και 

1 2 3 3 1 2
0s s s s s sI I I I I I       
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Γ.2 Μέθοδος Κόμβων 

 Βασίζεται στον Νόμο Ρευμάτων Kirchhoff. 

 Εύρεση των δυναμικών των κόμβων του κυκλώματος.   

Γ.2.1 Διαδικασία Προσδιορισμού δυναμικών 

Έστω το παρακάτω κύκλωμα: 

 

Σχήμα 26.  

Το κύκλωμα έχει τους 3 κόμβους (0, 1 και 2) οι οποίοι φαίνονται στο Σχήμα 4. Για τον 

υπολογισμό των δυναμικών του θεωρούμε αυθαίρετα μηδενικό δυναμικό σε ένα κόμβο. 

Έστω, ότι ο κόμβος 0 έχει μηδενικό δυναμικό (γειωμένος), 

 0 0V V  (91) 

Νόμος ρευμάτων Kirchhoff στον κόμβο 1: 

 
1 1 2sI I I   (92) 

Νόμος ρευμάτων Kirchhoff στον κόμβο 2: 

 
23 2sI I I   (93) 

Ισχύει ότι, 

 1 1 1 0V I R V   (94) 

Δηλαδή, 

 
1 0

1

1

V V
I

R


  (95) 

Επίσης, ισχύει ότι, 

 1 2 2 2V I R V   (96) 
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Δηλαδή, 

 
1 2

2

2

V V
I

R


  (97) 

Επίσης, ισχύει ότι, 

 2 3 3 0V I R V   (98) 

Δηλαδή, 

 
2 0

3

3

V V
I

R


  (99) 

Λαμβάνοντας υπόψη την Εξ. (91), οι Εξ. (95) και (99) γίνονται: 

 
1

1

1

V
I

R
  (100) 

και 

 
2

3

3

V
I

R
  (101) 

Ο συνδυασμός των Εξ. (92), (100) και (97), δίνει: 

 

 
1

1 1 2

1 2

s

V V V
I

R R


   (102) 

ή 

 
1 1 2

1 2 2

1 1 1
( )sI V V
R R R

    (103) 

ή 

 
1 1 2 1 2 2( )sI G G V G V    (104) 

όπου 1G  και 1G  είναι οι αγωγιμότητες των αντιστάσεων 1R  και 2R , δηλαδή: 

 1

1

1
G

R
  (105) 

 2

2

1
G

R
  (106) 

Ο συνδυασμός των Εξ. (93), (97) και (101), δίνει: 

 
2

2 1 2

3 2

s

V V V
I

R R


   (107) 
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ή 

 
21 2

2 2 3

1 1 1
( ) sV V I

R R R
     (108) 

ή 

 
22 1 2 3 2( ) sG V G G V I     (109) 

όπου 3G  είναι η αγωγιμότητα της αντίστασης 3R , δηλαδή: 

 3

3

1
G

R
  (110) 

Γράφουμε τις Εξ. (104) και (109) σε μορφή πινάκων. Δηλαδή: 

 
1

2

1 2 2 1

2 2 3 2

s

s

IG G G V

IG G G V

     
   

     
 (111) 

Γενικά: 

 

1

2

11 12 1 1

21 22 2 2

1 2 N

sN

sN

sN N NN N

IG G G V

IG G G V

IG G G V

     
   
 
   
   
   
     

 (112) 

όπου 

 Οι αγωγιμότητες iiG  ονομάζονται αυτό-αγωγιμότητες και είναι ίσες με το άθροισμα 

των αγωγιμοτήτων των κλάδων των οποίων το ένα άκρο είναι συνδεδεμένο με τον 

κόμβο i. 

Για το παραπάνω κύκλωμα:  

Άθροισμα των αγωγιμοτήτων των κλάδων που τέμνονται στον κόμβο 1: 

11 1 2G G G   

Άθροισμα των αγωγιμοτήτων των κλάδων που τέμνονται στον κόμβο 2: 

22 2 3G G G   

 Οι αγωγιμότητες ijG  ονομάζονται κοινές αγωγιμότητες και είναι ίσες με το 

άθροισμα των αγωγιμοτήτων που ανήκουν στον κλάδο που έχει άκρα τους 

κόμβους i και j. 

Για το παραπάνω κύκλωμα:  

Άθροισμα αγωγιμοτήτων στον κλάδο μεταξύ των κόμβων 1 και 2 : 12 21 2G G G   
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 Τα ρεύματα 
isI  είναι ίσα με το αλγεβρικό άθροισμα των ρευμάτων με φορά προς 

ή από τον κόμβο i. Τα ρεύματα που κατευθύνονται προς τον κόμβο θεωρούνται 

θετικά (+) ενώ αυτά που απομακρύνονται θεωρούνται αρνητικά (-).  

Για το παραπάνω κύκλωμα:  

Αλγεβρικό άθροισμα των ρευμάτων με φορά προς ή από τον κόμβο 1: 
1 1s sI I   

Αλγεβρικό άθροισμα των ρευμάτων με φορά προς ή από τον κόμβο 2: 
2 2s sI I   

Εφαρμογή: 

Έστω ότι: 

1 2 1 2 310 , 5 , 5 , 10 , 2s sI A I A R R R         

Τότε, 

1 1 1
11 1 2

1 2

1 1 1 1
0.2 0.1 0.3

5 10
G G G

R R
             

 
 

1 1 1
22 2 3

2 3

1 1 1 1
0.1 0.5 0.6

10 2
G G G

R R
             

 
 

1
12 21 2

2

1 1
0.1

10
G G G

R
     


 

Επιλύουμε το σύστημα με τη μέθοδο Cramer: 

 

 
1 2 2

0

2 2 3

0.3 0.1
0.3 0.6 ( 0.1) ( 0.1) 0.18 0.01 0.17

0.1 0.6

G G G
D

G G G

  
          

  
  

 
1

1

2

1

2 3

10 0.1
10 0.6 5 ( 0.1) 6 0.5 6.5

5 0.6

s

s

I G
D

I G G

 
         


  

1

1

1 2

2

2

0.3 10
5 0.3 ( 0.1) 10 1.5 1 2.5

0.1 5

s

s

G G I
D

G I


         

 
 

Άρα, 

1
1

0

6.5
38.24

0.17

D
V V V

D
    

Επίσης, 

2
2

0

2.5
14.70

0.17

D
V V V

D
    

Τα ρεύματα 1I , 2I και 3I  δίνονται, αντίστοιχα, από τις Εξ.(100), (97) και (101). Δηλαδή:  
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1
1

1

38.24
7.65

5

V V
I A

R
  


 

Δηλαδή, 

 
1 2

2

2

38.24 14.70
2.35

10

V V V V
I A

R

 
  


  

και 

 
2

3

3

14.70
7.35

2

V V
I A

R
  


  

Παράδειγμα 1 

Για το κύκλωμα του παρακάτω σχήματος να βρεθούν τα ρεύματα που διαρρέουν τις 

αντιστάσεις του.  

 

Σχήμα 27.  

Το κύκλωμα έχει τους 4 κόμβους (0, 1, 2 και 3) οι οποίοι φαίνονται στο Σχήμα 4. Για τον 

υπολογισμό των δυναμικών του θεωρούμε αυθαίρετα μηδενικό δυναμικό σε ένα κόμβο. 

Έστω, ότι ο κόμβος 0 έχει μηδενικό δυναμικό (γειωμένος), 

 0 0V V  (113) 

Ισχύει: 

 

1

2

3

11 12 13 1

21 22 23 2

31 32 33 3

s

s

s

G G G V I

G G G V I

G G G V I

      
    
   
    
          

 (114) 

όπου 
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11 1

22 1 2 3

33 3 4

G G

G G G G

G G G



  

 

 (115) 

και 

 

12 21 1

13 31

23 32 3

0

G G G

G G

G G G

 

 

 

 (116) 

και 

 

1

2

3

0

0

s s

s

s

I I

I

I

 

 

 

 (117) 

Άρα, 

 

1 1 1

1 1 2 3 3 2

3 3 4 3

0

0

0 0

sG G V I

G G G G G V

G G G V

    
    
    
    
         

 (118) 

Εφαρμογή: 

Έστω ότι: 

1 2 3 42 , 1 , 1 , 1 , 1sI A R R R R          

Τότε, 

1 1 1 1
1 2 3 41 , 1 , 1 , 1G G G G            

Άρα, 

 

1

2

3

1 1 0 2

1 3 1 0

0 1 2 0

V

V

V

    
    
  
    
        

 (119) 

Παράδειγμα 2 

Για το κύκλωμα του Σχήματος 28 να βρεθούν τα ρεύματα που το διαρρέουν.  
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Σχήμα 28.  

Το κύκλωμα έχει τους 4 κόμβους (0, 1, 2 και 3) οι οποίοι φαίνονται στο Σχήμα 4. Για τον 

υπολογισμό των δυναμικών του θεωρούμε αυθαίρετα μηδενικό δυναμικό σε ένα κόμβο. 

Έστω, ότι ο κόμβος 0 έχει μηδενικό δυναμικό (γειωμένος), 

 0 0V V  (120) 

Ισχύει: 

 

1

2

3

11 12 13 1

21 22 23 2

31 32 33 3

s

s

s

G G G V I

G G G V I

G G G V I

      
    
   
    
          

 (121) 

όπου 

 

11 1 2 3

22 2 4 5

33 3 4

G G G G

G G G G

G G G

  

  

 

 (122) 

και 

 

12 21 2

13 31 3

23 32 4

G G G

G G G

G G G

 

 

 

 (123) 

και 
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1 1

2 2

3 2 3

s s

s s

s s s

I I

I I

I I I

 

 

  

 (124) 

Άρα, 

 

1

2

2 3

1 2 3 2 3 1

2 2 4 5 4 2

3 4 3 4 3

s

s

s s

G G G G G V I

G G G G G V I

G G G G V I I

       
    

    
    
            

 (125) 

Εφαρμογή: 

Έστω ότι: 

1 2 3 1 2 3 4 520 , 5 , 10 , 0.2 , 0.5 , 0.25 , 0.5 , 1s s sI A I A I A R R R R R              

Τότε, 

1 1 1 1 1
1 2 3 4 55 , 2 , 4 , 2 , 1G G G G G               

Άρα, 

1

2

3

11 2 4 20

2 5 2 5

4 2 6 15

V

V

V

     
    
  
    
          
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Γ.3 Αρχή της Επαλληλίας 

 Εφαρμόζεται στην περίπτωση που υπάρχουν περισσότερες από μια πηγές τάσης 

ή ρεύματος στο κύκλωμα. 

Σε ένα γραμμικό κύκλωμα η τάση στα άκρα ενός παθητικού στοιχείο (αντίσταση, 

πυκνωτής, πηνίο) ή το ρεύμα που το διαρρέει είναι το αλγεβρικό άθροισμα των τάσεων ή 

των ρευμάτων που προκαλούνται από τις πηγές (τάσης ή ρεύματος) του κυκλώματος 

όταν καθεμία από αυτές λειτουργεί από μόνη της.    

Γ.3.1 Διαδικασία Προσδιορισμού Τάσεων ή Ρευμάτων 

 Υπολογίζεται η τάση kV  στα άκρα μιας αντίστασης (ή η ένταση του ρεύματος kI  

που τη διαρρέει) όταν λειτουργεί κάθε πηγή τάσης (ή ρεύματος) μόνη της. Οι 

υπόλοιπες πηγές μηδενίζονται. 

 Μηδενισμός πηγής τάσης ισοδυναμεί σε βραχυκύκλωμα. 

 Μηδενισμός πηγής ρεύματος αντιστοιχεί σε ανοικτό κύκλωμα. 

 Για ένα ηλεκτρικό κύκλωμα με Ν πηγές τάσης ή ρεύματος, η τάση στα άκρα ενός 

παθητικού στοιχείου και του ρεύματος που το διαρρέει δίνονται, αντίστοιχα, από τα 

αλγεβρικά αθροίσματα: 

 
1

N

k

k

V V


  (126) 

            και 

 
1

N

k

k

I I


  (127) 

Γ.3.2 Παραδείγματα 

Παράδειγμα 1 

Έστω το παρακάτω κύκλωμα. Να υπολογιστούν τα ρεύματα που διαρρέουν τις 

αντιστάσεις καθώς και η ηλεκτρική ισχύς που καταναλώνεται σε κάθε μια. Δίνονται: 

30E V , 9sI A , 1 5R    και 2 10R   . 

 

Σχήμα 29.  
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Το κύκλωμα περιέχει μια πηγή ρεύματος και μια πηγή τάσης.  

α) Αρχικά υπολογίζονται τα ρεύματα όταν λειτουργεί μόνο η πηγή ρεύματος sI . Ο 

μηδενισμός της πηγής τάσης E  αντιστοιχεί σε βραχυκύκλωμα, όπως φαίνεται και στο 

παρακάτω σχήμα. 

 

Σχήμα 30.  

Στην περίπτωση αυτή, έχουμε διαιρέτη ρεύματος. Οπότε: 

 
1

11

1 2

s

G
I I

G G



 (128) 

και 

 
2

21

1 2

s

G
I I

G G



 (129) 

όπου 

 1
1

1

1 1
0.2

5
G

R
   


 (130) 

και 

 1
2

2

1 1
0.1

10
G

R
   


 (131) 

Οπότε: 

 11

0.2
9 6

0.1 0.2
I A A 


  

και 

 21

0.1
9 3

0.1 0.2
I A A 


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β) Στη συνέχεια, υπολογίζονται τα ρεύματα όταν λειτουργεί μόνο η πηγή τάσης. Ο 

μηδενισμός της πηγής ρεύματος αντιστοιχεί σε ανοικτό κύκλωμα, όπως φαίνεται και στο 

παρακάτω σχήμα. 

 

Σχήμα 31.  

Στην περίπτωση αυτή, έχουμε: 

 12 22

1 2

E
I I

R R
 


 (132) 

ή 

 12 22

30
2

5 150

V
I I A  

 
  

Από την Εξ. (127), το συνολικό ρεύμα που διαρρέει αντίσταση 1R  και την αντίσταση 2R  

είναι, αντίστοιχα: 

 1 11 12I I I   (133) 

και 

 2 21 22I I I   (134) 

Δηλαδή: 

1 6 2 8I A A A    

και 

 2 3 ( 2 ) 1I A A A      

 

 

Παράδειγμα 2 

Έστω το παρακάτω κύκλωμα. Να υπολογιστούν τα ρεύματα που διαρρέουν τις 

αντιστάσεις. 1 15E V , 2 36E V , 6sI A , 1 2.5R    και 2 3 10R R   .  
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Σχήμα 32.  

Το κύκλωμα περιέχει μια πηγή ρεύματος και δύο πηγές τάσης.  

α) Αρχικά υπολογίζονται τα ρεύματα όταν λειτουργεί μόνο η πηγή τάσης 1E . Ο 

μηδενισμός της πηγής τάσης 2E  αντιστοιχεί σε βραχυκύκλωμα και ο μηδενισμός της 

πηγής ρεύματος sI  αντιστοιχεί σε ανοικτό κύκλωμα, όπως φαίνεται και στο παρακάτω 

σχήμα. 

 

Σχήμα 33.  

Στην περίπτωση αυτή, η αντίσταση 2R  και η αντίσταση 3R  συνδέονται παράλληλα. Οπότε  

 23 2 3G G G   (135) 

Δηλαδή: 

 1
23 23

2 3

1 1 1 1
0.2

10 10
G G

R R
      

 
  

και 

 23

23

1
R

G
  (136) 

Δηλαδή: 

 23 23
1

23

1 1
5

0.2
R R

G 
    


  

Το ρεύμα που διαρρέει την αντίσταση 1R  είναι: 
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1

11

1 23

E
I

R R



 (137) 

Δηλαδή: 

 11

15 15
2

2.5 5 7.5

V V
I A  

  
  

Το ρεύμα που 11I  διαιρείται στα ρεύματα 21I  και 31I  (διαίρεση ρεύματος). Οπότε: 

 
2

21 11

2 3

G
I I

G G



 (138) 

Δηλαδή: 

 
1

21
1

1

0.110
2 2 1

1 1 0.2

10 10

I A A A





  




 

  

και 

 
3

31 11

2 3

G
I I

G G



 (139) 

Δηλαδή: 

 
1

31
1

1

0.110
2 2 1

1 1 0.2

10 10

I A A A





  




 

  

β) Στη συνέχεια, υπολογίζονται τα ρεύματα όταν λειτουργεί μόνο η πηγή τάσης 2E . Ο 

μηδενισμός της πηγής τάσης 1E  αντιστοιχεί σε βραχυκύκλωμα και ο μηδενισμός της 

πηγής ρεύματος sI  αντιστοιχεί σε ανοικτό κύκλωμα, όπως φαίνεται και στο παρακάτω 

σχήμα. 

 

Σχήμα 34.  
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Στην περίπτωση αυτή, η αντίσταση 1R  και η αντίσταση 2R  συνδέονται παράλληλα. Οπότε  

 12 1 2G G G   (140) 

Δηλαδή: 

 1 1 1
12 12

1 2

1 1 1 1
0.4 0.1 0.5

2.5 10
G G

R R
            

 
  

και 

 12

12

1
R

G
  (141) 

Δηλαδή: 

 12
1

1
2

0.5
R


  


  

Το ρεύμα που διαρρέει την αντίσταση 3R  είναι: 

 
2

32

3 12

E
I

R R



 (142) 

Δηλαδή: 

 32

36 36
3

10 2 12

V V
I A  

  
  

Το ρεύμα που 32I  διαιρείται στα ρεύματα 12I  και 22I  (διαίρεση ρεύματος). Οπότε: 

 
1

12 32

1 2

G
I I

G G



 (143) 

Δηλαδή: 

 
1

12
1 1

1

0.4 42.5
3 3 3 2.4

1 1 0.4 0.1 5

2.5 10

I A A A A


 


   

  


 

  

και 

 
2

22 32

1 2

G
I I

G G



 (144) 

Δηλαδή: 

 
1

22
1 1

1

0.1 110
3 3 3 0.6

1 1 0.4 0.1 5

2.5 10

I A A A A


 


   

  


 
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γ) Στη συνέχεια, υπολογίζονται τα ρεύματα όταν λειτουργεί μόνο η πηγή ρεύματος sI . Ο 

μηδενισμός των πηγών τάσης 1E  και 2E  αντιστοιχούν σε βραχυκυκλώματα, όπως 

φαίνεται και στο παρακάτω σχήμα. 

 

Σχήμα 35.  

Στην περίπτωση αυτή, το ρεύμα που sI  διαιρείται στα ρεύματα 13I , 23I  και 33I  (διαίρεση 

ρεύματος). Οπότε: 

 
1

13

1 2 3

s

G
I I

G G G


 
 (145) 

Δηλαδή: 

 
1

13
1 1 1

1

0.4 42.5
6 6 6 4

1 1 1 0.4 0.1 0.1 6

2.5 10 10

I A A A A


  


   

    
 

  

  

και 

 
2

23

1 2 3

s

G
I I

G G G


 
 (146) 

Δηλαδή: 

 
1

23
1 1 1

1

0.1 110
6 6 6 1

1 1 1 0.4 0.1 0.1 6

2.5 10 10

I A A A A


  


   

    
 

  

  

και 

 
3

33

1 2 3

s

G
I I

G G G


 
 (147) 

Δηλαδή: 
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1

33
1 1 1

1

0.1 110
6 6 6 1

1 1 1 0.4 0.1 0.1 6

2.5 10 10

I A A A A


  


   

    
 

  

  

Από την Εξ. (127), το συνολικό ρεύμα 1I , 2I  και 3I  που διαρρέει αντίσταση 1R , την 

αντίσταση 2R  και την αντίσταση 2R  είναι, αντίστοιχα: 

 1 11 12 13I I I I    (148) 

Δηλαδή: 

1 2 ( 2.4 ) ( 4 ) 4.4I A A A A       

και 

 2 21 22 23I I I I    (149) 

Δηλαδή: 

2 1 0.6 1 2.6I A A A A     

και 

 3 31 32 33I I I I    (150) 

Δηλαδή: 

3 1 ( 3 ) 1 1I A A A A      
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Γ.4 Θεώρημα Thevenin 

Σύμφωνα με το θεώρημα Thevenin, ένα γραμμικό κύκλωμα με δυο εξωτερικούς 

ακροδέκτες Α και Β μπορεί να αντικατασταθεί με ένα ισοδύναμο κύκλωμα που αποτελείται 

από μια πηγή τάσης TE  σε σειρά με μια αντίσταση TR .  

 Η τάση TE  είναι η τάση στους ακροδέκτες Α και Β όταν το κύκλωμα είναι ανοικτό. 

 Η αντίσταση TR  είναι η ισοδύναμη αντίσταση του κυκλώματος ως προς τους 

ακροδέκτες Α και Β, όταν οι ανεξάρτητες πηγές του κυκλώματος 

απενεργοποιούνται (μηδενίζονται). 

Γ.4.1 Παραδείγματα 

Παράδειγμα 1 

Έστω το παρακάτω κύκλωμα που έχει μια πηγή τάσης με ηλεκτρεγερτική δύναμη 

20E V και μια πηγή ρεύματος με 5sI A  ενώ οι τιμές των αντιστάσεων είναι 1 2R   , 

2 5R    και 3 10R   . Να υπολογιστούν: 

α) Η τάση TE  και η αντίσταση TR  του ισοδύναμου κυκλώματος Thevenin. 

β) Το ρεύμα που διαρρέει την αντίσταση φορτίου 20LR    καθώς και η τάση στα άκρα 

της και η ηλεκτρική ισχύς που καταναλώνεται σε αυτή. 

 

Σχήμα 36.  

α) Υπολογισμός της τάσης TE  

1ος Τρόπος: 

 

Σχήμα 37.  
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Εφαρμόζουμε τον ΝΡΚ στον κόμβο Κ. 

 1 2 3sI I I I    (151) 

Για τον κλάδο ΚΛ ισχύει: 

 1 1V I R V    (152) 

ή 

 1 1V V V I R      (153) 

Όμως, 

 TV V E    (154) 

Οπότε, 

 1

1

TE
I

R
  (155) 

Για τον κλάδο ΕΖ ισχύει: 

 2 2V E I R V     (156) 

ή 

 2 2V V V E I R       (157) 

Όμως, 

 EZ TV V E   (158) 

Οπότε, 

 2

2

TE E
I

R


  (159) 

Για τον κλάδο ΓΔ ισχύει: 

 3 2V I R V    (160) 

ή 

 3 3V V V I R      (161) 

Όμως, 

 TV V E    (162) 

Οπότε, 

 3

3

TE
I

R
  (163) 

Άρα η Εξ. (151) γίνεται: 

 
1 2 3

T T T
s

E E E E
I

R R R


    (164) 
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ή 

 
1 2 3

1 1 1
( )s T T TI E E E E

R R R
     (165) 

ή 

 1 2 3( )s T T TI G E G E E G E     (166) 

Επιλύοντας την Εξ. (166), προκύπτει:  

 
2

1 2 3

s
T

I G E
E

G G G




 
 (167) 

Ισχύουν:  

1
1 1

1

1 1
0.5

2
G G

R
    


 

και  

1
2 2

2

1 1
0.2

5
G G

R
    


 

και  

1
3 1

3

1 1
0.1

10
G G

R
    


 

Οπότε η Εξ. (167), δίνει:  

 
5 0.2 20 9

11.25
0.5 0.2 0.1 0.8

TE V V V
 

  
 

 (168)  

2ος Τρόπος: 

Εφαρμόζουμε τη μέθοδο βρόχων. 

Αρχικά μετατρέπουμε την πηγή ρεύματος σε ισοδύναμη πηγή τάσης, όπως φαίνεται και 

στο παρακάτω σχήμα. 

 

Σχήμα 38. 
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Η τάση της ισοδύναμης πηγής ρεύματος είναι: 

1s sE I R  

ή 

5 2 10sE A V    

Δύο κύρια ρεύματα: 

 Το ρεύμα 1I  που διαρρέει αποκλειστικά το βρόχο 1   

 Το ρεύμα 2I  που διαρρέει αποκλειστικά το βρόχο 2 

Ισχύει: 

 
1 2 2 1

2 2 3 2

sR R R I E E

R R R I E

      
    

     
 (169) 

Η επίλυση του συστήματος με τη μέθοδο Cramer δίνει: 

1 2 2

0

2 2 3

7 5
7 15 ( 5) ( 5) 105 25 80

5 15

R R R
D

R R R

  
          

  
 

και  

2

1

2 3

10 5
( 10) 15 20 ( 5) 150 100 50

20 15

sE E R
D

E R R

   
          


 

και  

1 2

2

2

7 10
7 20 ( 10) ( 5) 140 50 90

5 20

sR R E E
D

R E

  
          

 
 

Άρα, 

 
1

1

0

50
0.625

80

D
I A A

D
    

και, 

2
2

0

90
1.125

80

D
I A A

D
    

H τάση TE  δίνεται από: 

 2 3TE V I R   (170) 

Άρα: 

1.125 10 11.25TE A V    
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β) Υπολογισμός της αντίστασης TR  

Αρχικά μηδενίζουμε της σταθερές πηγές (τάσης και ρεύματος) 

 Μηδενισμός πηγής τάσης ισοδυναμεί σε βραχυκύκλωμα ( 0E ). 

 Μηδενισμός πηγής ρεύματος αντιστοιχεί σε ανοικτό κύκλωμα ( 0sI  ). 

Με βάση τα παραπάνω σχεδιάζεται το κύκλωμα του επόμενου σχήματος. 

 

Σχήμα 39.  

H αντίσταση TR  δίνεται από: 

TR R  

Οι αντιστάσεις 1R , 2R  και 3R  συνδέονται παράλληλα. Άρα: 

1 2 3G G G G    

Οπότε: 

1
TR R

G




   

Είναι: 

1 1(0.5 0.2 0.1) 0.8G  
       

Άρα: 

1

1
1.25

0.8
TR


  


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Γ.5 Θεώρημα Norton 

Σύμφωνα με το θεώρημα Norton, ένα γραμμικό κύκλωμα με δυο εξωτερικούς ακροδέκτες 

Α και Β μπορεί να αντικατασταθεί με ένα ισοδύναμο κύκλωμα που αποτελείται από μια 

πηγή ρεύματος NI  που παράλληλα με αυτή συνδέεται μια αντίσταση NR . 

 Η αντίσταση NR  είναι η ισοδύναμη αντίσταση του κυκλώματος, ως προς τους 

ακροδέκτες Α και Β, όταν οι ανεξάρτητες πηγές του κυκλώματος 

απενεργοποιούνται (μηδενίζονται). Δηλαδή είναι ίση με την αντίσταση TR  του 

ισοδύναμου κυκλώματος Thevenin, 

 N TR R  (171) 

 Το ρεύμα NI  είναι το ρεύμα βραχυκυκλώσεως των ακροδεκτών Α και Β. 

Αποδεικνύεται ότι ισχύει: 

 
T

N

T

E
I

R
  (172) 

           όπου TE  είναι η τάση του ισοδύναμου κυκλώματος Thevenin. 

Γ.5.1 Ισοδυναμία Κυκλωμάτων Thevenin και Norton 

Το κύκλωμα Thevenin μπορεί να μετατραπεί σε ισοδύναμο κύκλωμα Norton, και το 

αντίστροφο, όπως φαίνεται στο παρακάτω σχήμα. 

 

Σχήμα 40. 

Στην περίπτωση αυτή ισχύουν: 

 Για τις αντιστάσεις Thevenin και Norton, 

 T NR R  (173) 

 Η σχέση που συνδέει την τάση της πηγής τάσης TE  Thevenin και της ένταση NI  

της πηγής ρεύματος Norton δίνεται από: 
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s

s

s

E
I

R
  (174) 

Γ.5.2 Παραδείγματα 

Παράδειγμα 1 

Έστω το παρακάτω κύκλωμα που έχει μια πηγή τάσης με ηλεκτρεγερτική δύναμη 

20E V  ενώ οι τιμές των αντιστάσεων είναι 1 2R   , 2 5R    και η αντίσταση φορτίου 

20LR   . Να υπολογιστούν: 

α) Η ένταση NI  και η αντίσταση NR  του ισοδύναμου κυκλώματος Norton. 

β) Το ρεύμα που διαρρέει την αντίσταση φορτίου 20LR    καθώς και η τάση στα άκρα 

της και η ηλεκτρική ισχύς που καταναλώνεται σε αυτή. 

 

 

Σχήμα 41. 

Αρχικά αποσυνδέουμε την αντίσταση φορτίου από το κύκλωμα για να βρούμε το 

ισοδύναμο κύκλωμα ως προς του ακροδέκτες Α και Β, όπως φαίνεται στο παρακάτω 

σχήμα.  

 

 

Σχήμα 42. 

α) Υπολογισμός της έντασης του ρεύματος NI  
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Το ρεύμα NI  είναι το ρεύμα βραχυκυκλώσεως μεταξύ των ακροδεκτών Α και Β. Οπότε 

βραχυκυκλώνουμε τα σημεία αυτά όπως φαίνεται και στο παρακάτω σχήμα. Από το 

σχήμα συμπεραίνουμε ότι από την αντίσταση 2R  δεν περνάει ρεύμα, αφού λόγω του 

βραχυκυκλώματα το ρεύμα που δίνεται από την πηγή τάσης περνάει από την αντίσταση 

1R  και μετά από το βραχυκύκλωμα. Δηλαδή από την αντίσταση 1R  περνάει ρεύμα NI  και 

από την αντίσταση 2R  μηδενικό ρεύμα. Από τον ΝΤΚ στο κύκλωμα προκύπτει ότι: 

 
1

N

E
I

R
  (175) 

 

Σχήμα 43. 

β) Υπολογισμός της αντίστασης NR  

Η αντίσταση NR  είναι η ισοδύναμη αντίσταση του κυκλώματος, ως προς τους ακροδέκτες 

Α και Β, όταν οι ανεξάρτητες πηγές του κυκλώματος απενεργοποιούνται (μηδενίζονται). 

Για τον υπολογισμό της, λοιπόν, μηδενίζουμε την πηγή τάσης (ισοδυναμεί με 

βραχυκύκλωμα), όπως φαίνεται στο παρακάτω σχήμα.   

H αντίσταση NR  δίνεται από: 

NR R  

Οι αντιστάσεις 1R , 2R  συνδέονται παράλληλα. Άρα: 

1 2

1 1 1

R R R

   

ή 

1 2

1 2

R R
R

R R



 

Άρα 
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1 2

1 2

N

R R
R

R R



 

 

 

Σχήμα 44. 

Το ισοδύναμο κύκλωμα Norton φαίνεται στο παρακάτω σχήμα.  

 

 

Σχήμα 45. 

Συνδέεται τώρα η αντίσταση φορτίου LR  στους ακροδέκτες Α και Β, όπως φαίνεται στο 

παρακάτω σχήμα.  

 

Σχήμα 46. 



ΚΩΣΤΑΣ ΝΑΝΟΣ – ΣΗΜΕΙΩΣΕΙΣ ΗΛΕΚΤΡΟΤΕΧΝΙΑΣ   ΜΕΡΟΣ Ι 

 52 

Στην περίπτωση αυτή το ρεύμα LI  που διαρρέει την αντίσταση LR  δίνεται από (διαιρέτης 

ρεύματος): 

L
L N

N L

G
I I

G G



 

Δηλαδή: 

1

1 1
L

L N

N L

R
I I

R R





 

όπου ύστερα από κάποιες πράξεις προκύπτει: 

N
L N

N L

R
I I

R R



 

Η τάση LV  στα άκρα της αντίστασης LR  είναι: 

L L LV I R  

Η ηλεκτρική ισχύς που καταναλώνεται στην αντίσταση LR  είναι: 

L L LP V I  
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Γ.6 Θεώρημα Μέγιστης Ισχύος 

Χρήση: 

 Υπολογισμός της αντίστασης φορτίου ενός ηλεκτρικού δικτύου έτσι ώστε το φορτίο 

να απορροφήσει τη μέγιστη δυνατή ισχύ. 

Θεώρημα: 

Έστω το παρακάτω ισοδύναμο Thevenin κύκλωμα. Ισχύουν: 

 

Σχήμα 47. 

 Η ηλεκτρική ισχύς LP  που αποδίδεται στην αντίσταση LR  είναι μέγιστη όταν, 

 L TR R  (176) 

 Η μέγιστη ηλεκτρική ισχύς ,maxLP  που αποδίδεται στην αντίσταση LR  είναι: 

 
2

,max
4

T
L

T

E
P

R
  (177) 

Απόδειξη: 

Η ηλεκτρική ισχύς LP  που αποδίδεται στην αντίσταση LR  είναι: 

 2
L TLP I R  (178) 

όπου το ρεύμα LI  που τη διαρρέει δίνεται από: 

 
T

L

T L

E
I

R R



 (179) 

Οπότε η ισχύς είναι: 

 

2

T
L L

T L

E
P R

R R

 
 

 
 (180) 

ή 
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2

2( )

T
L

T L

E
P

R R



 (181) 

Για να βρούμε τη αντίσταση LR  για την οποία γίνεται μέγιστη η ισχύς, παραγωγίζουμε την 

Εξ. (181) ως προς την αντίσταση LR . Δηλαδή: 

 
2 2 22

2 4

( ) 2 ( )

( ) ( )

L L T L L T LT T T

L T T L T L

dP d E R E R R E R R R

dR dR R R R R

    
  

  
 (182) 

Ύστερα από πράξεις προκύπτει ότι: 

 
 

2

3

( )L T LT

T T L

dP E R R

dR R R





 (183) 

Ακρότατα (μέγιστο ή ελάχιστο) έχουμε όταν μηδενίζεται η πρώτη παράγωγος που δίνεται 

από την Εξ. (182). Δηλαδή: 

 0
L

T

dP

dR
  (184) 

ή 

 
 

2

3

( )
0

T LT

T L

E R R

R R





 (185) 

ή 

 0T LR R   (186) 

Τελικά: 

 L TR R  (187) 

Για να είναι μέγιστη η ισχύς (και όχι ελάχιστη) θα πρέπει να ισχύει: 

 
2

2
0

L T

L

L R R

d P

dR


  (188) 

Ισχύει ότι: 

 
 

22

32

( )L L T LT

L L LL T L

d P d dP d E R R

dR dR dR dR R R

  
         

 (189) 

ή 

 

 

 

   

2
2 232

62

2 2
2

4 4

( ) 3 ( )

( ) 3 ( ) 2
2

T L T L T LT TL

L T L

T L T L T LT T
T

T L T L

E R R E R R R Rd P

dR R R

E R R E R R R R
E

R R R R

    




     
 

 

 (190) 



ΚΩΣΤΑΣ ΝΑΝΟΣ – ΣΗΜΕΙΩΣΕΙΣ ΗΛΕΚΤΡΟΤΕΧΝΙΑΣ   ΜΕΡΟΣ Ι 

 55 

Οπότε για  

 L TR R  (191) 

έχουμε ότι: 

 
 

2 22
2

4 32 4

2 2
2 0

32 8
L T

L T T TT T
T

L T TT TR R

d P R R E R E
E

dR R RR R

 
   


 (192) 

Άρα η ισχύς, στην περίπτωση αυτή, είναι μέγιστη. 

Στην περίπτωση αυτή ( L TR R ), το ρεύμα που διαρρέει την αντίσταση LR  δίνεται από: 

 
T

L

T T

E
I

R R



 (193) 

ή 

 
2

T
L

T

E
I

R
  (194) 

Η μέγιστη ισχύς στην περίπτωση αυτή δίνεται από την Εξ. (178) και είναι: 

 

2

,max
2

T
L T

T

E
P R

R

 
 
 

 (195) 

Τελικά προκύπτει ότι: 

 
2

,max
4

T
L

T

E
P

R
  (196) 

Γ.6.1 Παραδείγματα 

Παράδειγμα 1 

Έστω το παρακάτω κύκλωμα που έχει μια πηγή τάσης με ηλεκτρεγερτική δύναμη 

1 20E V και μια πηγή τάσης με 2 10E V  ενώ οι τιμές των αντιστάσεων είναι 1 2R   , 

2 5R   , 3 10R    και 4 2R    Να υπολογιστούν: 

α) Η τάση TE  και η αντίσταση TR  του ισοδύναμου κυκλώματος Thevenin μεταξύ των 

ακροδεκτών Α και Β. 

β) Η αντίσταση φορτίου LR  έτσι ώστε η ηλεκτρική ισχύς που καταναλώνεται σε αυτή να 

είναι μέγιστη. Πόση είναι η μέγιστη ισχύς; 
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Σχήμα 48. 

α) Αρχικά αποσυνδέουμε την αντίσταση φορτίου από το κύκλωμα για να βρούμε το 

ισοδύναμο κύκλωμα ως προς του ακροδέκτες Α και Β, όπως φαίνεται στο παρακάτω 

σχήμα.  

 

Σχήμα 49. 

α) Υπολογισμός της ισοδύναμης τάσης TE  

Από το κύκλωμα περνάει μόνο το ρεύμα I , όπως φαίνεται και στο παρακάτω σχήμα. 

Εφαρμόζοντας το ΝΤΚ έχουμε: 

 1 1 2 2 3 4V E IR IR E IR IR V         (197) 

ή 

 
1 2

1 2 3 4

E E
I

R R R R




  
 (198) 

Εφαρμόζοντας το ΝΤΚ μεταξύ των σημείων Α και Β έχουμε: 

 1 1 4V IR E IR V      (199) 

Άρα: 

 1 1 4( )V V V E I R R        (200) 

H τάση TE  δίνεται από: 
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 1 1 4( )TE V E I R R     (201) 

β) Υπολογισμός της ισοδύναμης αντίστασης TR  

Η αντίσταση TR  είναι η ισοδύναμη αντίσταση του κυκλώματος, ως προς τους ακροδέκτες 

Α και Β, όταν οι ανεξάρτητες πηγές του κυκλώματος απενεργοποιούνται (μηδενίζονται). 

Για τον υπολογισμό της, λοιπόν, μηδενίζουμε την πηγή τάσης (ισοδυναμεί με 

βραχυκύκλωμα), όπως φαίνεται στο παρακάτω σχήμα. 

 

Σχήμα 50. 

H αντίσταση TR  δίνεται από: 

TR R  

Οι αντιστάσεις 1R , 4R  συνδέονται σε σειρά. Δηλαδή: 

14 1 4R R R   

Οι αντιστάσεις 2R , 3R  συνδέονται σε σειρά. Δηλαδή: 

23 2 3R R R   

Οι αντιστάσεις 14R , 23R  συνδέονται παράλληλα. Δηλαδή: 

14 23

1 1 1

R R R

   

ή 

14 23

14 23

R R
R

R R



 

Άρα 

14 23

14 23

T

R R
R

R R



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Το ισοδύναμο κύκλωμα Thevenin φαίνεται στο παρακάτω σχήμα. 

 

Σχήμα 51. 

Στη συνέχεια συνδέουμε την αντίσταση φορτίου στους ακροδέκτες Α κα Β όπως φαίνεται 

στο παρακάτω σχήμα. 

 

Σχήμα 52. 

Όπως αποδεικνύεται από το Θεώρημα Μέγιστης Ισχύος: 

 Η ηλεκτρική ισχύς LP  που αποδίδεται στην αντίσταση LR  είναι μέγιστη όταν, 

 L TR R  (202) 

 Η μέγιστη ηλεκτρική ισχύς ,maxLP  που αποδίδεται στην αντίσταση LR  είναι: 

 
2

,max
4

T
L

T

E
P

R
  (203) 

 


